
© 2022 Arm

Arm Morello Evaluation
Platform - Validating CHERI-
based Security in a High-
performance System

Richard Grisenthwaite
SVP Chief Architect and Fellow, Arm
Richard.Grisenthwaite@arm.com

2 © Copyright 2022 Arm Limited

Acknowledgements
This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL),
under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016
(“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and SSITH research programs. The views, opinions,
and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the Isaac Newton
Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited, Google, Google
DeepMind, HP Enterprise, and the Gates Cambridge Trust.

University of Cambridge, SRI International, etc Contributors on CHERI: Robert N. M. Watson, Simon W. Moore, Peter Sewell,
Peter G. Neumann, Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, Rosie Baish, John Baldwin, Hadrien Barrel, Thomas
Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs,
Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A. Theo Markettos, J. Edward Maste,
Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Kyndylan Nienhuis, Robert Norton-
Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas
Sewell, Stacey Son, Ian Stark, Domagoj Stolfa, Andrew Turner, Munraj Vadera, Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

3 © Copyright 2022 Arm Limited

Security is the greatest challenge computing needs to
address to meet its full potential

4 © Copyright 2022 Arm Limited

Memory (Un)safety issues remain major source of CVEs
• Matt Miller (BlueHat 2019) : Microsoft around 70% of CVEs are memory unsafety issues

• #1 Heap out-of-bounds
• #2 use-after-free
• #3 type confusion
• #4 uninitialized use

• Chromium reports similar issues:
• Memory safety - The Chromium Projects
“70% of our serious security bugs are memory safety problems.”

• Been around for a very long time
• Morris Worm 1988 usually credited as the first buffer overflow attack on the internet
• C/C++ is not going away any time soon in the world’s software

https://www.chromium.org/Home/chromium-security/memory-safety

5 © Copyright 2022 Arm Limited

CHERI architecture in one slide
CPU architecture adds 128-bit “capabilities” in the register file plus a tag bit

• Capability contains the address, bounds information, permission information etc
• The tag bit is metadata that distinguishes a capability from normal data

The tag bit prevents “forging” of a capability
This functionality gives strong provenance of capabilities

• Architecture has the ability to “seal” capabilities as well as part of compartmentalisation

Loads/stores using capabilities as addresses are checked to be legal
• Within address range and matching the supplied permissions

Data processing on capabilities has rules to limit operations
• Bounds cannot be arbitrarily increased, permissions cannot be relaxed etc

PC is converted to a capability called the PCC to place bounds on the PC
• Direct Branches will be within the PCC;
• indirect branches (including returns) can change PCC

Capability is used in place of a normal pointer in some or all situations
• Exactly how when this happens is part of the software usage case

6 © Copyright 2022 Arm Limited

Two key applications of the CHERI primitives

1. Efficient, fine-grained memory protection for C/C++
• Strong source-level compatibility, but requires recompilation and minor source-code changes
• Deterministic and secret-free referential, spatial, and temporal memory safety
• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated
• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization
• Multiple software operational models from objects to processes
• Increases exploit chain length: Attackers must find and exploit more vulnerabilities
• Orders-of-magnitude performance improvement over MMU-based techniques

(<90% reduction in IPC overhead in early FPGA-based benchmarks)

7 © Copyright 2022 Arm Limited

Microsoft security analysis of CHERI C/C++

Microsoft Security Research Center (MSRC) study analyzed all
2019 Microsoft critical memory-safety security vulnerabilities
• Metric: “Poses a risk to customers → requires a software update”
• Vulnerability mitigated if no security update required

Blog post and 42-page report
• Concrete vulnerability analysis for spatial safety
• Abstract analysis of the impact of temporal safety
• Red teaming of specific artifacts to gain experience

CHERI, “in its current state, and combined with other
mitigations, it would have deterministically mitigated at least
two thirds of all those issues”

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

8 © Copyright 2022 Arm Limited

Morello Prototype system: What Has Arm Produced?

Morello prototype architecture
Morello Platform Model (FVP)
– a software model of the
Morello platform
Linaro hosted OSS
Memory Model Tools
Toolchain
Partner Forum including FAQ
Technical reference manual
Morello test chip and board
Morello Overview Guide
Morello Development Platform
and Software Stack User Guide
Future – how-to video

https://www.arm.com/morello

https://developer.arm.com/documentation/ddi0606/latest
https://www.arm.com/morello

9 © Copyright 2022 Arm Limited

TSMC N7 Process

2.5GHZ CPU

109.9mm2

10 © Copyright 2022 Arm Limited

Extending Structures and Memory to support capabilities
Increase register file to support 129-bits

• Area, power, and other register file optimizations need to be considered
• Could be implemented as separate register file or unified register file

Requires additional storage at all levels of memory hierarchy (1-bit per 16B of data)
• Includes caches, buffers, and other microarchitecture structures
• May widen existing structure or store in separate structures

System buses need to transport tag information
• Use existing signals where possible to decrease protocol changes

Forwarding networks and internal data buses may need to increase
Decode complexity and area (new instructions, modes, system registers)

• Strains on decode space availability may require extra execution units or other changes

11 © Copyright 2022 Arm Limited

Memory checks and Load Store extensions
Address generation usually a critical path in load store designs

• Compartmentalizing legacy code may add an offset to address
generation

• Capabilities require new bounds checks on those addresses

New faults need to be detected and reported to control and track capabilities in a system
• For protection (compartmentalization) or performance (revocation)
• Adds dependency between stored capability and the location to which being stored that did not exist

before (which may cause delays if implementation stalls address until data available)
• MMU Access faults and PTE updates (capability write permission/dirty bit) dependent on store tag

Fault Address Register (FAR) captures full address for all faults (including late detected,
precise, data dependent faults)

• May require additional storage to propagate full address throughout pipeline

Capability instruction implementation must maintain atomicity
• Makes cracking instructions more difficult, especially for atomic instructions such as CAS, ST{L}XP

srcb

srca
+

srcb

srca

+

Cap
base
offset

12 © Copyright 2022 Arm Limited

Extending data processing - Bounds Checking
Upper and Lower Bounds information is compressed into 64 bits
When bounds checks are needed, this has to be decompressed

• Needed for all loads/store operations and branches – done in parallel with address generation
• Also needed to cover advanced capability operations in the integer unit

Tg Perms xx Exp Bottom Topx

GetBounds GetBounds

Base ≥ Addr Limit < Addr&

ValueInput Capability

13 © Copyright 2022 Arm Limited

Extending data processing - GetBounds logic
Decoding of the compressed CHERI format for bounds

• One bounds check requires two shifters, one adder, two short comparators (for TopAdj) and one
wide comparator (to compare decompressed Bound against address)

Tg Perms xx Exp Bottom Topx Value

Mask

Add / Concat

TopAdj =
±2Exp+16 Val(msbs)

Base[63:0]

14 © Copyright 2022 Arm Limited

Extending the data processing - Representability
Representability checks needed to make sure capability modifications are valid

• Representability is an artifact of
compressing two 64-bit bounds and a
64-bit pointer into 128 bits

• This affects arithmetic operations since
taking the pointer too far out of
bounds isn't representable

• Representability is designed to be fast
for the common case (add/subtract)
but other cases require full
decompresson (absolute value)

Addr = Atop⋅2Exp+20

Addr = (Atop+1)⋅2Exp+20

Base

Limit

Length

MinRep 2Exp+12

MaxRep

Dereferenceable regionRepresentable region
Representable

region
Dereferenceable
region

15 © Copyright 2022 Arm Limited

Instruction fetch and control flow prediction for capabilities
PC is extended to 129-bits (Program Counter Capability - PCC)
Branches need representable checks, bounds checks, and new fault handling

• Includes new and legacy branches
• Indirect legacy branches need expensive representable check that may add cycles

How to handle indirect branches to a capability (might change PCC):
• Extend branch predictor to hold PCC (simple 1-bit direction prediction or more complex and larger

predictions)
• Statically predict PCC does not change and take branch mispredict penalty if wrong
• Stall PCC dependencies until PCC known

Stalling PCC option reduces concerns in modifying/growing existing branch unit but
introduces performance costs in delaying instructions dependent on new PCC

Existing branch predict infolimitpermissions type baseSource PC

16 © Copyright 2022 Arm Limited

Holding the CHERI capability validity tag in the memory
Considerations should be made for tags in DRAM in terms of area and performance
(similar to MTE)
Add tags as separate carve out space in DRAM or as part of data within (such as ECC)
Carve out space for tags reduces effective size of DRAM
Increased latency to read both tags and data (two accesses)

• Can be mitigated with other structures (tag caches, compression caches, etc.)

If using existing ECC bits for tag may decrease resolution of single bit errors

DRAM

ca
rv

e
ou

t

DRAM

DataTagECC

17 © Copyright 2022 Arm Limited

Demonstration Morello open-source desktop software stack

CHERI / Morello LLVM toolchains
• Implements sub-language and C/C++ language

pointers as capabilities

CheriBSD adapted version of FreeBSD
• Complete open-source operating system
• Memory-safe kernel and userspace
• Supports legacy aarch64 binaries
• Multiple compartmentalization models,

including fast IPC and sandboxed libraries

X11, KDE-based desktop environment
• 6MLoC adapted by 1 FTE in 3 months
• 0.026%LoC changes for memory safety
• 73.8% assessed vulnerability mitigation rate

18 © Copyright 2022 Arm Limited

Formal proving of security properties of Morello
• Fundamental security property of CHERI architectures is Reachable Capability Monotonicity:

• normal code execution, of arbitrary code, cannot increase the set of available capabilities

• Conventional testing cannot provide high assurance - but formal methods can prove it holds
in general

• Applied at the architecture specification language level
• Arm ASL (62K lines of code) -> SAIL -> Isabelle Proof Assistant
• 3 security issues found before tapeout

• SAIL ISA specification also used for ISA test generation
• Stressing capability corner cases based on strong ISA understanding

• Machine-checked mathematical proofs of whole-ISA security properties of a full-scale
industry ISA

Verified Security for the Morello Capability-enhanced Prototype Arm Architecture. Bauereiss (1), Campbell (2), Sewell (1), Armstrong (1),
Esswood (1), Stark (2), Barnes (3), Watson (1), Sewell (1). In ESOP 2022. (1) University of Cambridge, (2) University of Edinburgh, (3) Arm
Ltd. http://www.cl.cam.ac.uk/~pes20/morello-proofs-esop2022.pdf

http://www.cl.cam.ac.uk/%7Epes20/morello-proofs-esop2022.pdf

19 © Copyright 2022 Arm Limited

What Feedback Do We Want To Get from Morello?
Answers to the performance questions for a wide range of different usage models
Compelling examples of Capabilities offering security/performance improvements

• Backed up by “Red-teams” having attacked the system and demonstrated security of the system
• Compelling in comparison with existing deployed state of the art approaches

Better Understanding of
• Different languages and run-times can use capabilities, not only C and C++, but also Javascript, Java
• Fine-grained compartmentalisation can be used
• Answers to the performance questions for a wide range of different usage models

A showcase to encourage other architectures to adopt capabilities
Experience of what the right SoC hardware is for building capabilities
An architectural approach with formally proven security properties

What to put into the future Arm architecture for an industrial deployment

© 2022 Arm

Questions?

© Copyright 2022 Arm Limited

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध�वाद

Kiitos
شكرًا

ধনয্বাদ
תודה

© Copyright 2022 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Arm Morello Evaluation Platform - Validating CHERI-based Security in a High-performance System
	Acknowledgements
	Security is the greatest challenge computing needs to address to meet its full potential
	Memory (Un)safety issues remain major source of CVEs
	CHERI architecture in one slide
	Two key applications of the CHERI primitives
	Microsoft security analysis of CHERI C/C++
	Morello Prototype system: What Has Arm Produced?
	Slide Number 9
	Extending Structures and Memory to support capabilities
	Memory checks and Load Store extensions
	Extending data processing - Bounds Checking
	Extending data processing - GetBounds logic
	 Extending the data processing - Representability
	Instruction fetch and control flow prediction for capabilities
	Holding the CHERI capability validity tag in the memory
	Demonstration Morello open-source desktop software stack
	Formal proving of security properties of Morello
	What Feedback Do We Want To Get from Morello?
	Questions?
	Slide Number 21
	Slide Number 22

