Kraken: A Direct Event/Frame-Based Multi-sensor Fusion SoC for Ultra-Efficient Visual Processing in Nano-UAVs

Alfio Di Mauro (adimauro@ethz.ch)
Moritz Scherer (scheremo@ethz.ch)
Davide Rossi (davide.rossi@unibo.it)
Luca Benini (lbenini@ethz.ch)

PULP Platform
Open Source Hardware, the way it should be!
Toward nano and pico-size form factor UAVs

Advanced autonomous drone

Applications
- Search & rescue
- Post-disaster inspection
- Surveillance
- Maintenance

energy Capacity (Battery) 5410mAh

Nano-drone
https://www.bitcraze.io/products/crazyflie-2-1

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & 800g of weight
- Energy Capacity (Battery) 5410mAh

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

Nano-drone
https://www.bitcraze.io/products/crazyflie-2-1

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & 800g of weight
- Energy Capacity (Battery) 5410mAh

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

Nano-drone
https://www.bitcraze.io/products/crazyflie-2-1

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & 800g of weight
- Energy Capacity (Battery) 5410mAh

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

Nano-drone
https://www.bitcraze.io/products/crazyflie-2-1

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & 800g of weight
- Energy Capacity (Battery) 5410mAh

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

Nano-drone
https://www.bitcraze.io/products/crazyflie-2-1

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & 800g of weight
- Energy Capacity (Battery) 5410mAh

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?

Nano-drone
https://www.bitcraze.io/products/crazyflie-2-1

Can we fit sufficient “intelligence” in a 30X smaller payload and 20X lower energy budget?
Achieving true autonomy on nano-UAVs

Execute complex visual task at high speed and robustness fully on board

Object detection

Obstacle avoidance & Navigation

Environment exploration

08/22/2022 - Alfio Di Mauro - adimauro@ethz.ch
Autonomous navigation building blocks deployable on Kraken

RISC-V FC:
- RGB frames from CPI sent to CUTIE and the RISC-V Cluster
- Event-Frames from DVSI streamed to SNE

RISC-V Cluster:
- “DroNet” Obstacle avoidance network [2]

SNE:
- “LIF-FireNet” Low-Latency Optical flow spiking network [3]

CUTIE:
- CIFAR10 Accurate Object recognition ternary network [4]

The Kraken
Kraken SoC Architecture

1 RISC-V Core
(Fabric Controller)

1MB L2 Memory

128kB L1 Memory

8 RISC-V Cores
(Compute Cluster)

ML Accelerators

IO peripherals
Multi-Sensor direct data flow towards accelerators

- Autonomous IO subsystem
- Support for many protocols:
 - HyperBus, (4 x) I2C, QSPI, UART
- Support for visual sensors:
 - 1 x Event-Camera IF (DVSI)
 - 1 x RGB Camera IF (CPI)
Direct data processing
Processing event-frames on Kraken’s neuromorphic accelerator

A more complex dynamic than conventional DNNs neurons:

- Membrane Potential Accumulation/Activation: \(1 \text{ SynAcc} = 1 \text{ 4b-ADD} + 1 \text{ 8b-COMpare}\)
- Membrane Potential decay: \(1 \text{ SynDec} = (1 \text{ 8b-MUL}) + (1 \text{ 8b-MUL} + 1 \text{ 8b-ADD})\)
Mapping full neural networks on SNE

DVS stream of event (Event-frame)

L2 Memory Ports

8 Neuromorphic engines

• 16 Processing elements
• 64 Leaky Integrate & Fire (LIF) neurons per PE

Spiking Neural Engine (SNE) 522 SynDec & 24 SyAcc OP/cycle
Processing RGB frames on CUTIE ternary engine

- KxK window on all input channels unrolled, cycle-by-cycle sliding
- All weights for an output channel are held stationary in local buffer (latch-based)
- Completely unrolled inner products vs. systolic MAC → one output activation per cycle!
Kraken`s CUTIE Implementation

- Data in 1.6bits (Ternary value) with Comp/Decomp on the fly
- Configuration in Kraken
 - 96 channels (OCUs)
 - 3x3 kernels
 - 64 x 64 pixels feature maps (158 KB)
 - 9 layers of weights (117 KB)
- Lots of TMAC/cycle
 - 96 OCUs, 96 Input channels, 3x3 kernels:
 - $96 \times 96 \times 3 \times 3 = 82'944$ Ternary-MAC/cycle
Silicon prototype
Physical implementation

- GlobalFoundries 22nm FDX technology
- QFN88 chip package, 9mm\(^2\) chip area
- 0.5V to 0.9V operating voltage
- Cluster Max Freq: 370MHz
- CUTIE Max Freq: 140MHz
- SNE Max Freq: 220MHz
- Independent clock/power domain:
 - RISC-V Cluster
 - SNE
 - CUTIE
RISC-V Cluster Power/Performance tradeoff

Parallel Convolutional Benchmark (8 Cores)

- SIMD operation to maximize power/performance
- Wide range of numerical precision (32bits to 2bits)
- peak throughput of 0.98 MAC/cycle/core
- High throughput mode
 - 380MHz @ 0.9V (118mW)
 - 90GOP/s @ 750 GOP/s/W (2bit)
- High efficiency mode
 - 130MHz @ 0.5V (15mW)
 - 30GOP/s @ 1.9TOP/s/W (2bit)

DroNet [2]
Obstacle avoidance: 28 inf/s

SNE Power/Performance tradeoff

Parallel 5-layers SNN inference benchmark (8 SNE engines)

- High throughput mode
 - 220 MHz @ 0.8V (98mW)
 - 120 GSyOP/s @ 0.4 TSyOP/s/W

- High efficiency mode
 - 90MHz @ 0.5V (23mW)
 - 49GSyOP @ 1.1 TSyOP/s/W

LIF-Firenet [2] Optical flow:
- 20k inf/s @ 8uJ/inf (1% activity)
- 1k inf/s @ 170uJ/inf (20% activity)

08/22/2022 - Alfio Di Mauro - adimauro@ethz.ch
CUTIE Power/Performance tradeoff

Neural network inference benchmark

• High throughput mode (0.85V)
 • 55 TOp/s @ 450 TOp/s/W
• High efficiency mode (0.5V)
 • 15 Top/s @ 1036 TOp/s/W

CIFAR-10 – Ternary, Object detection [4]

Accuracy: 86%
Energy: 2.72µJ/inf

Advancing the SOA on all tasks

RISC-V Cluster
- Comparable 32bits-8bits SOA Energy efficiency to other PULPs [7]
- The highest energy efficiency on sub-byte SIMD operations (4b-2b)

SNE
- 1.7X higher than SOA [5] energy/efficiency

CUTIE
- 2X higher energy efficiency improvement over SOA [6]

In conclusion

Kraken can solve three complex visual tasks on-chip
Enable autonomous navigation on nano-UAVs!

- Optical flow from Event-Frames \rightarrow SNE
- Obstacle avoidance from RGB frames \rightarrow RISC-V
- Object detection from RGB frames \rightarrow CUTIE
- Vertical software stack to deploy applications

Next steps:
- Design a nano-drone form factor Kraken PCB
- Mount it on a Crazyflie drone platform

Thanks!