壁仞™ BR100 GPGPU:

Accelerating Datacenter Scale AI Computing

Mike Hong, Lingjie Xu
& Team

Hot Chips 34, Aug 2022
Notice and Disclaimer

- **Copyright** © 2020-2022 Biren Technology. All rights reserved.

- **Confidentiality.** This document contains confidential information of Biren Technology, which shall not be disclosed to any third party by any means unless explicitly permitted by Biren Technology.

- **Trademark.** All trade names, trademarks, graphical marks and domain names in this document are the properties of Biren Technology. Without prior written consent, they may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way.

- **Forward Looking Statements.** Information in this document, other than statements or description of historical fact, may contain forward-looking statements. The forward-looking statements are made based on certain assumptions, projections and calculations made by us with regards to the industry and management’s expertise. These forward-looking statements are subject to significant risks and uncertainties and our actual results may differ materially. Your business decisions shall not be made solely based on the information.

- **Disclaimer.** This material is provided "as is" without any express or implied warranty of any kind, including warranties of merchantability, title, non-infringement of intellectual property, or fitness for any particular purpose.
<table>
<thead>
<tr>
<th>BIREN BR100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
</tr>
<tr>
<td>Transistor Count</td>
</tr>
<tr>
<td>Host Interface</td>
</tr>
<tr>
<td>Peak Performance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>Interconnections</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Form Factor</td>
</tr>
</tbody>
</table>
Accelerating Deep Learning Workloads

Benchmark Performance Measured in Throughput

NVIDIA A100 BIREN BR100

Average speedup (~2.6 X)

ResNet-50: 2.5 X
Bert-Large: 2.8 X
Tacotron2: 2.7 X
Yolo v5: 2.4 X
Transformer: 2.6 X
Purpose-built for Datacenter-Scale Computing

- **C**ompute density
- **C**onnectivity
- **C**ost of ownership
- **C**o-design hardware and software
- **C**ompatibility with datacenter infrastructure
One Tapeout, Multiple Products

- To break the reticle size limit and integrate more transistors on chip
- One tapeout to empower multiple SKUs
- Smaller die for better yield, hence lower cost
- 896GB/s high speed die-to-die interconnect
- 30% more performance, 20% better yield compared with a monolithic design
BR100 Product Line

BR100

Hearten Server

壁砺™ 100 OAM

BR104

壁砺™ 104 PCIe
OAM Server Interconnect Topology
BR100 Product Line

BR100

BR104

壁砺™ 100 OAM

壁砺™ 104 PCIe

Hearten Server
Building blocks of a BR100 SPC:

- **16 x EU (execution unit)**, each EU has:
 - 16 x streaming processing core (V-core), 1 x tensor engine (T-core)
 - 40KB TLR (Thread Local Register)
 - 4 x SFU
 - TDA (Tensor Data Accelerator)

- **4 x 64KB L1 Cache/LSC (Load & Store Cache)**

- **Up to 8MB Distributed L2 Cache**
 - Holds shared data for all SPCs
 - Can be configured into scratchpad
 - Built-in reduction engine
Scalable CU Architecture

- Multiple EUs form a **CU (compute unit)**
- Thread groups in a CU are synchronized
- Each CU can contain 4/8/16 EUs
V-core: A General-Purpose SIMT Processor

Full set ISA for general purpose computing

- 16x cores, supporting FP32, FP16, INT32, INT16
- SFU
- Load/Store
- Data preprocessing
- Manages T-core with multiple sync channels
- Handles DL OPs like Batch Norm, ReLu, etc

Enhanced SIMT Model

- 128K threads run on 32 SPCs
- Cooperative Warps
- Super-scaler (static and dynamic)
Flexible V-Core Warp Control

Standard Control Mode

- Warps run the same code and partition the register files

C-Warp/Kernel Coroutine Control Mode

- Warps run different codes, collaborate with each other (producer-consumer) and exchange data in register files
 - Enhanced parallelism
 - Highly efficient for OP fusion
T-core: High Level Overview

To accelerate common operations in AI:
- MMA (Matrix Multiplication Addition)
- Convolution
- ...

Design Goals:
- To speed up MMA & convolution which account for majority workload in deep learning
- Best reuse among different dimensions (batch, sample, channel…)
- Model level and data level parallelism
- Closely coupled with V-cores and L2 scratchpad to maximize utilization
SPC-Scale 2.5D GEMM Architecture

Consists of:

- 16 T-cores in a 2D systolic array
- 2 groups of 8 x 8 dot product (dp) operations per T-core (8 x 8 x dp8 3D MMA for BF16)
- Equivalent to 64 x 64 Matrix Multiplication
 - Supports FP32, TF32+, BF16, INT16, INT8, INT4 tensor formats

Benefits:

- Higher data reuse rate with a big 2.5D GEMM
- Less memory bandwidth and cache occupation
- Better throughput and energy efficiency
- Lower latency v.s. big 2D GEMM
- More scalable and easier routing v.s. 3D GEMM
TF32+ Tensor Data Type

Why TF32+?

- E8M15, with 24 bits in total
- 32x more precise compared to TF32 in AI training
- To reuse BF16 multiplier (with 1+7 mantissa) and simplify T-core design
- Automatically kicked in when using tensor acceleration libraries and declared as FP32
Tensor Data Accelerator (TDA)

- TDAs in T-core and V-core are dedicated to accelerate address calculation and OOB using tensor descriptor.
- TDA improves tensor data fetch efficiency by offloading addressing overhead and supporting different tensor layouts.
Memory Scheme: NUMA and UMA

NUMA memory scheme
- Stores SPC's private data, e.g. activation
- Local access with high bandwidth
- Data broadcasted to relevant SPC in model parallelism

UMA memory scheme
- Stores shared data used by all SPCs, e.g. weights
- Accelerated by NoC multicasting
Near Memory Computing

Near Memory Engine: L2 Reduction

- Reduction operations in L2 by SPC instructions (1)
- Reduction by DMA (2)
- To offload SPCs and accelerate computation

Embedding Accelerator

- Embedding table processing accounts for major computation in recommendation systems
- Reduces the embedding table in L2 before SPC
Summary

✓ We introduced BR100, a GPGPU designed for accelerating datacenter-scale AI computing

• PFLOPS level compute density, high connection bandwidth (on-die/off-die)
• 7nm chiplet design with CoWoS packaging
• 550W OAM form factor with 8 cards all-to-all interconnection topology
• Over 300MB on-chip SRAM for data cache and reuse
• A general-purpose processor with 2.5D GEMM acceleration
• A new TF32+ tensor data type

✓ We optimized data streaming by introducing following features in BR100:

• Special C-Warp control mode
• TDA
• NUMA/UMA memory scheme with NoC multicast
• Near memory computing

✓ BIRENSUPA software platform allows developers to program on BR100 with ease