

Final Program

Monday, August 14, 1995—Memorial Auditorium

9:00–9:15	Welcome and Opening Remarks Nam Ling, General Chair Hasan S. AlKhatib and Norman P. Jouppi, Program Co-Chairs	
9:15-10:45	Session 1: Embedded Processors Session Chair: Robert Garner, Sun Microsystems	page
1.1	The First Superscalar 29K™ Family Member B. McMinn, Advanced Micro Devices	ì
1.2	The Architecture of the NS486 Integrated Processor M. D. Nemirovsky, National Semiconductor	11
1.3	The MiniRISC™ CW4010: A Superscalar MIPS Processor ASIC Core, P. Cobb, J. Cesana, LSI Logic	19
10:45-11:15	Break	
11:15–12:15	Keynote Address: "Nanometers and Gigabucks" Gordon Moore, Chairman of Intel Corporation	
12:15-1:45	Lunch	
1:45-3:15	Session 2: x86 Processors Session Chair: Mark Horowitz, Stanford University	
2.1	Optimizing the P6 Pipeline, D. Papworth, Intel Corporation	31
2.2	AMD-K5™ Microprocessor D. Christie, Advanced Micro Devices	41
2.3	Building a Better Beast: Native vs. RISC-like vs. VLIW Methods of Implementing x86 Microprocessors T. Garibay, Cyrix	49
3:15-3:45	Break	
3:45-5:15	Session 3: RISC-1 Session Chair: Winfried W. Wilcke, HaL Computer Systems	
3.1	Performance Evaluation of the Superscalar Speculative Execution HaL SPARC64 Processor A. Essen, S. Goldstein, HaL Computer Systems	59
3.2	SPARC64™+: HAL's Second Generation 64-bit SPARC Processor G. W. Shen, HaL Computer Systems	75
3.3	Memory Performance Features of the 64-bit PA-8000 B. Naas, Hewlett-Packard	87
5:15-7:00	Monday Evening Buffet Dinner	
7:00-9:00	Evening Panel Session: What is the Role of Competing Architectures in an x86 World Order? Moderator: John Wharton, Consultant/Analyst, Applications Research. Panel members: Keith Diefendorff, Senior Member Tech-	

nical Staff, Motorola; David Ditzel, President and CEO, Transmeta Corporation; John Novitsky, Director, CPU Products Group, Micro-Module Systems; Nick Tredennick, CEO, TechNerds International; Pete Wilson, Director, Microsystems Architecture, Groupe Bull

11:15–12:15 Keynote Address: "Nanometers and Gigabucks" Gordon Moore, Chairman of Intel Corporation

Tech Superpowers

Ubiquitous

Systems Foundry

Chiplets

Packaging

Software

Moore's Law Alive and Well

Hydrogen			W	e w	ill no	ot re	et III	ntil 1	he								2 He lium 4.002602
Lithium	Beryllium			We will not rest until the periodic table is exhausted								Boron	Carbon	Nitrogen	Oxygen 15,999	Fluorine 18.998403163	Neon
11 Na Sodium 22,98976928	12 Mg Magnesium 24,305											13 Aluminium 26,9815385	Silicon	hosphorus 30,973761998	16 S Sulfur 32,06	17 Chlorine 35.45	18 Argon 39,948
¹⁹ K	Ca	Sc	²² T	²³ V	²⁴ Cr	Mn ²⁵	Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	Zn	Ga	Ge	As	Se	Br Br	³⁶ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
Rb	³⁸ Sr	39 Y	Zr	Nb	⁴² Mo	TC	Ru	Rh Rh	Pd	47 Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	Te	53	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
⁵⁵ Cs	Ba	57 - 71 Lanthanoids	Hf	Ta	*W	Re	⁷⁶ Os	r Ir	Pt	Au	Hg	**************************************	Pb	⁸³ Bi	Po	⁸⁵ At	Rn
Caesium 132,90545196	Barium 137,327		Hafnium 178,49	Tantalum 180,94788	Tungsten 183,84	Rhenium 186 . 207	Osmium 190,23	Iridium 192,217	Platinum 195,084	Gold 196,966569	Mercury 200,592	Thallium 204.38	Lead 207,2	Bismuth 208,98040	Polonium (209)	Astatine (210)	Radon (222)
87 Francium	Radium	89 - 103 Actinoids	Rutherfordium	Db Dubnium	Sg Seaborgium	Bh Bohrium	Hassium	Meitnerium	DS Darmstadtium	Rg Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson

La	⁵⁸ Ce	Pr	Nd	Pm	Sm	Eu	Gd Gd	Tb	Dy	Ho	Er	⁶⁹ Tm	Yb	Lu
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.90547	140.116	140.90766	144.242	(145)	150.36	151.964	157.25	158.92535	162,500	164.93033	167,259	168.93422	173.045	174.9668
Ac Ac	Th 90	Pa Pa	92 U	⁹³ Np	Pu Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	Fm	Md	No local	103 L
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
(227)	232.0377	231.03588	238.02891	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)

Moore's Predicted "Day of Reckoning"

"It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected."

- Gordon E. Moore

Intel Package Technology

Package main function: provide power and signaling from motherboard to die

Added Package value: high density interconnects that enable larger die complexes from multiple process nodes

*Graphic is for illustrative purposes only and is not to scale

≥ time

Open Chiplet: Platform on a Package

White Paper: Universal Chiplet Interconnect Express (UCle)®: Building an open chiplet ecosystem, Dr. Debendra Das Sharma, Intel Senior Fellow and Chief Architect, I/O Technologies and Standards Promoter Member of UCle

_____ror_mod = modifier_ob mirror object to mirror mirror_object peration == "MIRROR_X": mirror_mod.use_x = True mirror_mod.use_y = False mirror_mod.use_z = False _operation == "MIRROR_Y" irror_mod.use_x = False lrror_mod.use_y = True # Irror_mod.use_z = False operation == "MIRROR Z" rror_mod.use_x = False lrror_mod.use_y = False rror_mod.use_z = True **sel**ection at the end -add ob.select= 1 er ob.select=1 ntext.scene.objects.action "Selected" + str(modified rror ob.select = 0 bpy Contex Clected 1 -- OPERATOR CLASSES types.Operator): X mirror to the selected ject.mirror_mirror_x" oxt.active_object is not

Software Defined; Silicon Enhanced

nt/Edge/Cloud/Data Center

Solutions, Services and Platforms

Languages, Frameworks, Tools, and Libraries

Foundational Software

(BIOS, OS, Simulation, Virtualization, and Services)

CloudTransforms IT

Big DataTransforms Business

Hot Chips 2012

In Summary

- Silicon design remains essential –
 HW/SW co- design is critical
- The action is in the edges (Mobile & Server)
- Cloud becomes the Software-Defined Datacenter
- Big Data opens up new opportunities for HW design

IFS as an **Open System** Foundry

System Software

x86 arm RISC-V°

oneAPI

Open SW Stack

Operating System Virtualization BIOS Firmware Tools & Compilers

System of Chips

Accelerated

System Partitioning

Architecture

Intel® Cofluent™

Differentiated IP

ASIC

Validation

Package & Interconnect Optimization

Silicon

#