NODAR 3D Vision System

Enabling Mass Production of Autonomous Vehicles

Mass Production of Autonomous Vehicles

Path to the production of 100M units/year

Quantity

Spinning
multi-channel lidar
high-resolution 3D sensing to solve AV problem

3D from cameras using software

Cost Reliability
Range Density

Wide-Baseline Stereo Vision Camera

Exquisitely dense and accurate point clouds to 1000+ meters

Long Range Data Collection

- Captures bridge crossing and reconstructs accurately as ego truck passes under bridge that casts a strong shadow on the road
- Captures repetitive patterns of the road railing barriers on right hand side
- Captures vehicles from near (12.2 m) to far (1.5 km) range

nodar

nodar

Stereo Vision Principle

Wider baseline gives longer range

Short baseline stereo vision has trouble discerning the shift of the image at long ranges

Stereo Vision Principle

Wider baseline gives longer range

Short baseline stereo vision has trouble discerning the shift of the image at long ranges

Wide baseline

Wide baseline gives sensor access to longer ranges but need to solve calibration problem for stereo cameras mounted on vehicles where maintaining 0.01° optical alignment is virtually impossible with shock and vibration

Stereo Vision Principle

NODAR solves decade-old online calibration problem

You can't ship an engineer with a product.

So researcher have been working on online calibration using natural scenes for the last 30+ years.

But published algorithms did not work on natural scenes

or compute fast enough to correct the camera parameters within the timescale of the road and engine vibrations

or produce the alignment accuracy needed to see 1000+ meters until NODAR's Hammerhead Vision System

Stereo Vision Capabilities

Image from Ford Open Dataset

Previous Generation

Short Baseline and Static Calibration

- Poor long-range 3D reconstruction
- Poor minimum range
- Poor vibration/shock tolerance

Next Generation
Wide Baseline and Online Calibration

- Lidar-like+ 3D point cloud reconstruction
- Excellent minimum range
- Excellent vibration/shock tolerance

Stereo Vision Capabilities - Bridge example

Robust Stereo Vision for Vehicles

Case 1: Construction site

Case 4: Airport

Case 2: Tunnel

Case 5: Overcast sky

Case 3: Girder bridge

Ford AV open dataset

Processing block diagram

Right image

Processing block diagram

Autocalibration Technology

NODAR's patented calibration tech enables automotive applications with significant shock and vibration

Keypoint Matching Approach Fails when descriptors are similar (windows in urban environments and active stereo illumination)

Industry Standard

NODAR

Calibration is an optimization problem

Rectification requires 6 extrinsic and 18+ intrinsic camera parameters. NODAR efficiently, quickly, and accurately searches camera parameters to support off-road environments with high levels of shock and vibration, which is the key innovation for supporting long-baseline stereo vision in vehicles.

- Intrinsic Parameters
- Characterize the transformation from camera to pixel coordinate systems of each camera
- Focal length, image center, aspect ratio
- Extrinsic parameters
- Describe the relative position and orientation of the two cameras
- Rotation matrix R and translation vector T

1. Roll (${ }^{\circ}$)
2. Pitch (${ }^{\circ}$)
3. Yaw (${ }^{\circ}$)
4. Camera location $x(m)$
5. Camera location y (m)
6. Camera location $z(m)$

Left Camera

1. Focal length x
2. Focal length y
3. Principal point x
4. Principal point y
5. Lens distortion, radial, k1
6. Lens distortion, radial, k2
7. Lens distortion, radial, k3
8. Lens distortion, tangential, p1
9. Lens distortion, tangential, p2

Right Camera

1. Focal length x
2. Focal length y
3. Principal point x
4. Principal point y
5. Lens distortion, radial, k1
6. Lens distortion, radial, k2
7. Lens distortion, radial, k3
8. Lens distortion, tangential, p1
9. Lens distortion, tangential, p2

> 24-dimensional optimization problem ~100 elements per dimension
> $100^{24}=10^{48}$ search space
> Assuming 1 ns per point
> $\rightarrow 3 \times 10^{31}$ years \gg Age of the universe $\left(10^{10}\right.$
> years)
> A challenging problem!

Definition of Cost Function (Highly Parallelizable)

Processing block diagram

Stereo Correspondence

Match corresponding pixels in left and right images

Signal Processing Algorithms

- 1D search (along epipolar lines)
- Faster
- Does not hallucinate
- Generalizable
- Example: Semi-Global Block Matching, 5MP image, 127G ops/frame

Deep Learning Algorithms

- 2D search (convolutions)
- Slower
- Could hallucinate
- Not generalizable
- Example: PSMNet, 5 MP image, 9604G ops/frame

Power vs. Applications for Long-Range Stereo Cameras

Decreasing Power Consumption Unlocks More Markets

Maximum Power Consumption (Watts)

Limitations in existing silicon platforms and the future

- The online calibration algorithms currently run on general purpose GPUs, which consumes too much power for smaller platforms (such as drones)
- To make this a "solved" problem across all autonomous platforms would require an ASIC for
- Rectification with ability to quickly modify the look-up tables
- Correspondence-computation accelerator

Summary

- High-resolution 3D sensing is necessary for autonomous vehicles
- Wide-baseline stereo vision provides a commercially viable path to mass production
- Next generation stereo vision has two innovations:
- Online calibration of independent camera modules on platforms with shock and vibration
- More accurate stereo correspondence algorithms
- Likely to see adoption of independently-mounted stereo vision cameras in other markets such as robotics, which has similar economics and platform costs as passenger vehicles

