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Wide-Baseline Stereo Vision Camera

Exquisitely dense and accurate point clouds to 1000+ meters



https://docs.google.com/file/d/1oieU2GkTPBQVCmfbFm6Lr8ddYAs4dodL/preview

Long Range Data Collection

e Captures bridge crossing and
reconstructs accurately as ego truck
passes under bridge that casts a
strong shadow on the road

e Captures repetitive patterns of the
road railing barriers on right hand
side

e Captures vehicles fromnear (12.2 m)
to far (1.5 km) range

nodar %ar




Stereo Vision Principle

Wider baseline gives longer range

CMOS

Lens Object
sensor

Short
baseline

Short baseline stereo vision has trouble
discerning the shift of the image at long ranges
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Stereo Vision Principle

Wider baseline gives longer range

CMOS
sensor

Object

\

Short
baseline

Short baseline stereo vision has trouble
discerning the shift of the image at long ranges

Wide
baseline

Wide baseline gives sensor access to longer
ranges but need to solve calibration problem for
stereo cameras mounted on vehicles where
maintaining 0.01° optical alignment is virtually
impossible with shock and vibration
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Stereo Vision Principle

NODAR solves decade-old online calibration problem
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Stereo Vision Capabilities

Previous Generation
Short Baseline and Static Calibration

e Poor long-range 3D reconstruction
e Poor minimum range
e Poor vibration/shock tolerance

Image from Ford Open Dataset

Next Generation
Wide Baseline and Online Calibration

e Lidar-like+ 3D point cloud reconstruction
e Excellent minimum range
e Excellent vibration/shock tolerance




Stereo Vision Capabilities - Bridge example
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Robust Stereo Vision for Vehicles

Case 2: Tunnel

Case 4: Airport Case 5: Overcast sky Ford AV open dataset



Processing block diagram

Right image

Online Calibration

Stereo
Correspondence

Depth map
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U.S. Patent No. 17/365,623, US11321875B2 and US11321876B2

Autocalibration Technology

NODAR’s patented calibration tech enables automotive applications with significant shock and vibration

Keypoint Matching Approach NODAR Cost Function Approach
Fails when descriptors are similar (windows in Robust under large range of scenes, computed
urban environments and active stereo illumination) efficiently, and no assumption of flat road surface

Industry Standard NODAR



Calibration is an optimization problem

Rectification requires 6 extrinsic and 18+ intrinsic camera parameters. NODAR efficiently, quickly, and accurately searches camera
parameters to support off-road environments with high levels of shock and vibration, which is the key innovation for supporting
long-baseline stereo vision in vehicles.
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et Left Camera Right Camero
a
transformation from camera Py \ P, 1. Focal length x 1. Focal length x
to pixel coordinate systems \ 2. Focal length y 2. Focal length y
of each camera 3. Principal point x 3. Principal point x
o Focal length, image center, 4. Principal point y 4. Principal point y
aspectratio 5. Lens distortion, radial, k1 5. Lens distortion, radial, k1
o 6. Lens distortion, radial, k2 6. Lens distortion, radial, k2
= Extrinsic parameters Y, 7. Lens distortion, radial, k3 7. Lens distortion, radial, k3
2 Describethe relative % 8. Lens distortion, tangential, p1 8. Lens distortion, tangential, p1
tpﬁ:{evoglf;rgeorgzntatlon of fi 9. Lens distortion, tangential, p2 9. Lens distortion, tangential, p2

o Rotation matrix R and
translation vector T

1. Roll (°)

2. Pitch (°)

3. Yaw (°)

4. Camera location x (m)
5. Camera location y (m)
6. Camera location z (m)
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Definition of Cost
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Processing block diagram

Right image

Online Calibration

Stereo
Correspondence

Depth map
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Stereo Correspondence

Match corresponding pixels in left and right images

Signal Processing Algorithms Deep Learning Algorithms
e 1D search (along epipolar lines) e 2D search (convolutions)
e Faster e Slower
e Does not hallucinate e Could hallucinate
e Generalizable e Not generalizable
e Example: Semi-Global Block Matching, e Example: PSMNet, 5 MP image, 9604G

5MP image, 127G ops/frame ops/frame
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Power vs. Applications for Long-Range Stereo Cameras
Decreasing Power Consumption Unlocks More Markets

Drones/ Last-Mile Consumer Robo-taxis/ Commercial
UAVs Delivery Vehicles Shuttles Vehicles

<5 W* <20 W* <50 W* <100 W* <300 W*
VGA, 10-20 FPS, 400 2 MP, 5-30 FPS, 50 5-8 MP, 5-30 FPS, 5-8 MP, 5-30 FPS, 5-8 MP, 5-30 FPS,
meters meters 200+ meters 200+ meters 400+ meters

Maximum Power Consumption (Watts)

Hammerhead Vision System Hammerhead Vision System
Next Year Today (using Nvidia HW) /nOd ar

* Compute power available on these platforms is roughly proportional to the vehicle mass (because kinetic energy is 2 mv?)



Limitations in existing silicon platforms and the future

e The online calibration algorithms currently run on general purpose GPUs,
which consumes too much power for smaller platforms (such as drones)

e To make this a “solved” problem across all autonomous platforms would

require an ASIC for

o Rectification with ability to quickly modify the look-up tables
o Correspondence-computation accelerator
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Summary

e High-resolution 3D sensing is necessary for autonomous vehicles
e \Wide-baseline stereo vision provides a commercially viable path to mass
production

e Next generation stereo vision has two innovations:
o  Online calibration of independent camera modules on platforms with shock and vibration
o More accurate stereo correspondence algorithms

e Likely to see adoption of independently-mounted stereo vision cameras in
other markets such as robotics, which has similar economics and platform

costs as passenger vehicles
%ar



