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Mass Production of Autonomous Vehicles
Path to the production of 100M units/year

Quantity

Time

Qty 100M

ProductionValidationFeasibility

Qty 1 Qty 100

DARPA Grand Challenge
2004 - 2007

Investments in AV Tech (~$100B)
2007 - 2022

Production
2022 -

Cost
Reliability

Range
Density

Need 
high-resolution 3D 
sensing to solve 

AV problem

Spinning 
multi-channel lidar 3D from cameras 

using software



Wide-Baseline Stereo Vision Camera
Exquisitely dense and accurate point clouds to 1000+ meters

https://docs.google.com/file/d/1oieU2GkTPBQVCmfbFm6Lr8ddYAs4dodL/preview


Long Range Data Collection

● Captures bridge crossing and 

reconstructs accurately as ego truck 
passes under bridge that casts a 
strong shadow on the road

● Captures repetitive patterns of the 
road railing barriers on right hand 
side

● Captures vehicles from near (12.2 m) 

to far (1.5 km) range

432m

20m

78m124m

347m

582m



Stereo Vision Principle
Wider baseline gives longer range

ObjectLensCMOS 
sensor

Small 
shift

Short 
baseline

Short baseline stereo vision has trouble 
discerning the shift of the image at long ranges



Stereo Vision Principle
Wider baseline gives longer range

Wide baseline gives sensor access to longer 
ranges but need to solve calibration problem for 
stereo cameras mounted on vehicles where 
maintaining 0.01° optical alignment is virtually 
impossible with shock and vibration

ObjectLensCMOS 
sensor

Small 
shift

Large 
shift

Short 
baseline

Wide 
baseline

Short baseline stereo vision has trouble 
discerning the shift of the image at long ranges



Stereo Vision Principle
NODAR solves decade-old online calibration problem

You can’t ship an 
engineer with a 
product.

Image of 
camera and 
person with 
checkerboar
d

So researcher have 
been working on 
online calibration 
using natural scenes 
for the last 30+ 
years.

Rectification 
geometry 
graphic

Natural 
Scenes 
graphic High 

Bandwidth

Sub-pixel 
accurate 
alignment

But published 
algorithms did not 
work on natural 
scenes or compute fast 

enough to correct the 
camera parameters 
within the timescale 
of the road and 
engine vibrations

or produce the 
alignment accuracy 
needed to see 1000+ 
meters until NODAR’s 

Hammerhead 
Vision System



Stereo Vision Capabilities

Previous Generation
Short Baseline and Static Calibration

● Poor long-range 3D reconstruction
● Poor minimum range
● Poor vibration/shock tolerance

Next Generation
Wide Baseline and Online Calibration

● Lidar-like+ 3D point cloud reconstruction
● Excellent minimum range
● Excellent vibration/shock tolerance

Image from Ford Open Dataset

Incorrect depth reported

Noisy depth map due to calibration  



Left frame

Depth map from 
Ford rectification

Depthmap with NODAR auto 
calibration softwareDangerous situation: says that 

bridge is farther away than it really 
is (and that there is no space to 

drive under it)

Stereo Vision Capabilities - Bridge example



Case 4: Airport

Case 3: Girder bridgeCase 2: TunnelCase 1: Construction site

Case 5: Overcast sky Ford AV open dataset

Robust Stereo Vision for Vehicles



Processing block diagram

Left image

Right image

Online Calibration
Stereo 

Correspondence

Depth map



Processing block diagram
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Autocalibration Technology
NODAR’s patented calibration tech enables automotive applications with significant shock and vibration

Keypoint Matching Approach

Fails when descriptors are similar (windows in 
urban environments and active stereo illumination)

NODAR Cost Function Approach

Robust under large range of scenes, computed 
efficiently, and no assumption of flat road surface

Industry Standard NODAR

U.S. Patent No. 17/365,623, US11321875B2 and US11321876B2



Calibration is an optimization problem
Rectification requires 6 extrinsic and 18+ intrinsic camera parameters.  NODAR efficiently, quickly, and accurately searches camera 
parameters to support off-road environments with high levels of shock and vibration, which is the key innovation for supporting 
long-baseline stereo vision in vehicles.

14

Right Camera
1. Focal length x
2. Focal length y
3. Principal point x
4. Principal point y
5. Lens distortion, radial, k1
6. Lens distortion, radial, k2
7. Lens distortion, radial, k3
8. Lens distortion, tangential, p1
9. Lens distortion, tangential, p2

24-dimensional optimization problem
~100 elements per dimension
10024 = 1048 search space
Assuming 1 ns per point 
→ 3 x 1031 years ≫ Age of the universe (1010 
years)
A challenging problem!

Left Camera
1. Focal length x
2. Focal length y
3. Principal point x
4. Principal point y
5. Lens distortion, radial, k1
6. Lens distortion, radial, k2
7. Lens distortion, radial, k3
8. Lens distortion, tangential, p1
9. Lens distortion, tangential, p2

1. Roll (°)
2. Pitch (°)
3. Yaw (°)
4. Camera location x (m)
5. Camera location y (m)
6. Camera location z (m)



Definition of Cost Function (Highly Parallelizable)
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Processing block diagram

Left image

Right image

Online Calibration
Stereo 

Correspondence

Depth map



Stereo Correspondence
Match corresponding pixels in left and right images

Signal Processing Algorithms

● 1D search (along epipolar lines)
● Faster
● Does not hallucinate
● Generalizable
● Example: Semi-Global Block Matching, 

5MP image, 127G ops/frame

Deep Learning Algorithms

● 2D search (convolutions)
● Slower
● Could hallucinate
● Not generalizable
● Example: PSMNet, 5 MP image, 9604G 

ops/frame

Optimal solution depends on application and compute resources



Power vs. Applications for Long-Range Stereo Cameras
Decreasing Power Consumption Unlocks More Markets

Maximum Power Consumption (Watts)

Robo-taxis/
Shuttles
<100 W*
5-8 MP, 5-30 FPS, 
200+ meters

Consumer 
Vehicles
<50 W*
5-8 MP, 5-30 FPS, 
200+ meters

Commercial 
Vehicles
<300 W*
5-8 MP, 5-30 FPS, 
400+ meters

Last-Mile 
Delivery
<20 W*
2 MP, 5-30 FPS, 50 
meters

Hammerhead Vision System
Today (using Nvidia HW)

Drones/
UAVs
<5 W*
VGA, 10-20 FPS, 400 
meters

Hammerhead Vision System
Next Year

* Compute power available on these platforms is roughly proportional to the vehicle mass (because kinetic energy is ½ mv²)



Limitations in existing silicon platforms and the future

● The online calibration algorithms currently run on general purpose GPUs, 
which consumes too much power for smaller platforms (such as drones)

● To make this a “solved” problem across all autonomous platforms would 
require an ASIC for

○ Rectification with ability to quickly modify the look-up tables
○ Correspondence-computation accelerator



Summary

● High-resolution 3D sensing is necessary for autonomous vehicles
● Wide-baseline stereo vision provides a commercially viable path to mass 

production
● Next generation stereo vision has two innovations:

○ Online calibration of independent camera modules on platforms with shock and vibration
○ More accurate stereo correspondence algorithms

● Likely to see adoption of independently-mounted stereo vision cameras in 
other markets such as robotics, which has similar economics and platform 
costs as passenger vehicles


