

Super-Compute System Scaling for ML Training

Bill Chang, Rajiv Kurian, Doug Williams, Eric Quinnell

Path to General Autonomy

Model Architecture

Vision, Path Planning, Auto-Labeling New Models Architectures Parameter Sizes Increasing Exponentially

Training Data

Video Training Data With 4D Labels Ground Truth Generation

Training Infrastructure

Training and Evaluation Pipeline

Accelerated ML Training System

Flexible System Architecture

Software at Scale

Typical System

Memory

Compute

Fixed Ratio

I/O

Optimized ML Training System

ML Requirements Evolving

Memory

Compute

I/O

Disaggregated System Architecture

Memory

Compute

Flexible Ratio

I/O

Optimized Compute

Memory

Technology-Enabled Scaling

System-On-Wafer Technology

- 25 D1 Compute Dies + 40 I/O Dies
- Compute and I/O Dies Optimize Efficiency and Reach
- Heterogenous RDL Optimized for High-Density and High-Power Layout

Maximize Performance and Yield

- Known Good Die and Fault Tolerant Designs
- Each Tile Assembled With Fully Functional Dies
- Harvesting and Fully Configurable Routing for Yield

Training Tile

Unit of Scale

- Large Compute With Optimized I/O
- Fully Integrated System Module (Power/Cooling)

Uniform High-Bandwidth

- 10 TB/s on-tile bisection bandwidth
- 36 TB/s off-tile aggregate bandwidth

9 PFLOPS BF16/CFP8
11 GB High-Speed ECC SRAM
36 TB/S Aggregate I/O BW

Flexible Building Block

Scale With Multiple Tiles

No Additional Power/Cooling Design Needed

Disaggregated Memory

Memory

V1 Dojo Interface Processor

32GB High-Bandwidth Memory

- 800 GB/s Total Memory Bandwidth

900 GB/s TTP Interface

- Tesla Transport Protocol (TTP) Full custom protocol
- Provides full DRAM bandwidth to Training Tile

50 GB/s TTP over Ethernet (TTPoE)

- Enables extending communication over standard Ethernet
- Native hardware support

32 GB/s Gen4 PCIe Interface

Dojo Interface Processor - PCIe Topology

160GB Total DRAM per Tile edge

- Shared memory for training tiles

5 DIP Cards Provide Max Bandwidth

- 4.5 TB/s aggregate bandwidth to DRAM over TTP

80 Lanes PCIe Gen4 Interface

- Provide standard connectivity to hosts

Scalable Communication

Memory

Tesla Transport Protocol

Bandwidth

Dojo Interface Processor - Z-Plane Topology

TTPoE - Point-to-Point over Ethernet

- Provides high-radix connectivity in Z-plane TTP network
- Enables "shortcuts" across the network
- Manage latency for sync and control across compute plane

Dojo Interface Processor - Z-Plane Topology

TTPoE - Point-to-Point over Ethernet

- Provides high-radix connectivity in Z-plane TTP network
- Enables "shortcuts" across the network
- Manage latency for sync and control across compute plane

Dojo Interface Processor - Z-Plane Topology

TTPoE - Point-to-Point over Ethernet

- Provides high-radix connectivity in Z-plane TTP network
- Enables "shortcuts" across the network
- Manage latency for sync and control across compute plane

Dojo Network Interface Card

Remote DMA over TTPoE

- DMA to/from any TTP endpoint (compute SRAM, DRAM)
- Leverage switched Ethernet networks

Enables Remote Compute for Pre/postprocessing

Remote DMA Topology

Scale-Out for CPU/Memory Bound Pre-Processing Workloads

V1 Dojo Training Matrix

1 EFLOP BF16/CFP8 1.3 TB High-Speed ECC SRAM 13 TB High-BW DRAM

Disaggregated Scalable System

Tile

Compute

Interface Processor

Memory

Network Interface

I/0

Software at Scale

Workloads operate almost entirely out of SRAM

Single copy of parameters - replicated just in time High utilization

Model Execution

Unlike typical accelerators, all forms of parallelism may cross die boundaries Thanks to High TTP Bandwidth

Parameters Are Distributed Across the DIPs

Model Execution

Parameters Are Sharded Across the Tiles at Load Time

Model Execution

Once per training run

Inputs Sharded Across the DIPs in the Batch Dimension

Model Execution

Inputs Are Also Sharded (by Batch) Across the Tiles

Model Execution

Parameters Are Replicated Across the Tiles Just in Time

A single copy of parameter in the entire system - use the high BW to replicate parameters just in time

Model Execution

Parameters Are Replicated Across the Tiles Just in Time

A single copy of parameter in the entire system - use the high BW to replicate parameters just in time

Model Execution

The First Layer Is Run in a Data Parallel Manner

Model Execution

E S L F

Parameters For the Next Layer Are Replicated Concurrently

1 copy per 2 tiles. The next layer is better executed in a model parallel manner

Model Execution

Discard Replicated Parameters and Input for Minimal SRAM Footprint

Model Execution

LH

П

Model Execution

Replicate Input Activation for the Next Layer - Split Across Channels Only 1 N/4 batch shown

35 L A

Compute Partial Sum for Each N/4 Batch on Each Tile Only 1 N/4 batch shown

Model Execution

Reduce Partial Sum for Each N/4 Batch Across Tiles

Small packet size, fine-grained synchronization and low-latency network makes pipelined partial sums work

Model Execution

5 L A

Same Computation Runs on Every Other N/4 Batch

Combination of data and model parallel

Model Execution

End-To-End Training Workflow

Data Loading

File Loading Decode Augmentation Ground Truth Generation

Output Compression File Write

Video-Based Training

Data Loading

Flexible compute required for:

- Augmentation
- Image rectification
- Ground truth generation

Multi-camera, multi-frame models

- Requires decoding GOP_SIZE/2 frames for first percamera frame and 1 decode for every frame after

Data Loading Needs of Different Model

Requirements as % of a Single Host's Capacity

Model 1

Model 2

Data Loading Needs of Different Models

Requirements as % of a Single Host's Capacity

Model 1

Model 2

Model 3

Disaggregated Data Loading Tier

Disaggregated Data Loading Tier

Disaggregated Resources

Resources Can Be Partitioned per Job

Dojo Supercomputer for ML Training

New integration enable high-bandwidth and performance

Uniform high-bandwidth enables full exploitation of parallelism by software

Vertically integrated I/O addresses all workload bottlenecks including data loading

