Super-Compute System Scaling for ML Training

Bill Chang, Rajiv Kurian, Doug Williams, Eric Quinnell
Path to General Autonomy

Model Architecture
Vision, Path Planning, Auto-Labeling
New Models Architectures
Parameter Sizes Increasing Exponentially

Training Data
Video Training Data With 4D Labels
Ground Truth Generation

Training Infrastructure
Training and Evaluation Pipeline
Accelerated ML Training System

Flexible System Architecture

Software at Scale
Typical System

- Compute
- Memory
- I/O

Fixed Ratio
Optimized ML Training System

ML Requirements Evolving

- Compute
- Memory
- I/O
Disaggregated System Architecture

Flexible Ratio

Compute

Memory

I/O
Optimized Compute

- Compute
- Memory
- I/O
Technology-Enabled Scaling

System-On-Wafer Technology
- 25 D1 Compute Dies + 40 I/O Dies
- Compute and I/O Dies Optimize Efficiency and Reach
- Heterogenous RDL Optimized for High-Density and High-Power Layout

Maximize Performance and Yield
- Known Good Die and Fault Tolerant Designs
- Each Tile Assembled With Fully Functional Dies
- Harvesting and Fully Configurable Routing for Yield
Training Tile

Unit of Scale
- Large Compute With Optimized I/O
- Fully Integrated System Module (Power/Cooling)

Uniform High-Bandwidth
- 10 TB/s on-tile bisection bandwidth
- 36 TB/s off-tile aggregate bandwidth

9 PFLOPS BF16/CFP8
11 GB High-Speed ECC SRAM
36 TB/s Aggregate I/O BW
Flexible Building Block

Scale With Multiple Tiles

No Additional Power/Cooling Design Needed
Disaggregated Memory
V1 Dojo Interface Processor

32GB High-Bandwidth Memory
- 800 GB/s Total Memory Bandwidth

900 GB/s TTP Interface
- Tesla Transport Protocol (TTP) - Full custom protocol
- Provides full DRAM bandwidth to Training Tile

50 GB/s TTP over Ethernet (TTPoE)
- Enables extending communication over standard Ethernet
- Native hardware support

32 GB/s Gen4 PCIe Interface
160GB Total DRAM per Tile edge
- Shared memory for training tiles

5 DIP Cards Provide Max Bandwidth
- 4.5 TB/s aggregate bandwidth to DRAM over TTP

80 Lanes PCIe Gen4 Interface
- Provide standard connectivity to hosts
Scalable Communication

- Compute
- Memory
- I/O
Dojo Interface Processor - Z-Plane Topology

TTPoE - Point-to-Point over Ethernet
- Provides high-radix connectivity in Z-plane TTP network
- Enables “shortcuts” across the network
- Manage latency for sync and control across compute plane
TTPoE - Point-to-Point over Ethernet
- Provides high-radix connectivity in Z-plane TTP network
- Enables “shortcuts” across the network
- Manage latency for sync and control across compute plane
TTPoE - Point-to-Point over Ethernet
- Provides high-radix connectivity in Z-plane TTP network
- Enables “shortcuts” across the network
- Manage latency for sync and control across compute plane
Dojo Network Interface Card

Remote DMA over TTPoE
- DMA to/from any TTP endpoint (compute SRAM, DRAM)
- Leverage switched Ethernet networks

Enables Remote Compute for Pre/post-processing
Remote DMA Topology

Scale-Out for CPU/Memory Bound Pre-Processing Workloads
V1 Dojo Training Matrix

1 EFLOP BF16/CFP8
1.3 TB High-Speed ECC SRAM
13 TB High-BW DRAM
Disaggregated Scalable System

Tile

Compute

Interface Processor

Memory

I/O

Network Interface
Workloads operate almost entirely out of SRAM
Single copy of parameters - replicated just in time
High utilization

Unlike typical accelerators, all forms of parallelism may cross die boundaries
Thanks to High TTP Bandwidth
Parameters Are Distributed Across the DIPs
Parameters Are Sharded Across the Tiles at Load Time

Once per training run
Model Execution

Inputs Sharded Across the DIPs in the Batch Dimension
Inputs Are Also Sharded (by Batch) Across the Tiles
Parameters Are Replicated Across the Tiles Just in Time

A single copy of parameter in the entire system - use the high BW to replicate parameters just in time
Model Execution

Parameters Are Replicated Across the Tiles Just in Time

A single copy of parameter in the entire system - use the high BW to replicate parameters just in time
The First Layer Is Run in a Data Parallel Manner
Model Execution

Parameters For the Next Layer Are Replicated Concurrently
1 copy per 2 tiles. The next layer is better executed in a model parallel manner
Discard Replicated Parameters and Input for Minimal SRAM Footprint
Replicate Input Activation for the Next Layer - Split Across Channels

Only 1 N/4 batch shown
Compute Partial Sum for Each N/4 Batch on Each Tile

Only 1 N/4 batch shown
Model Execution

Reduce Partial Sum for Each N/4 Batch Across Tiles

Small packet size, fine-grained synchronization and low-latency network makes pipelined partial sums work.
Model Execution

Same Computation Runs on Every Other N/4 Batch

Combination of data and model parallel
Video-Based Training

Flexible compute required for:
- Augmentation
- Image rectification
- Ground truth generation

Multi-camera, multi-frame models
- Requires decoding GOP_SIZE/2 frames for first per-camera frame and 1 decode for every frame after
Data Loading Needs of Different Model

Requirements as % of a Single Host’s Capacity

- Model 1
- Model 2
Data Loading Needs of Different Models

Requirements as % of a Single Host’s Capacity

- **Decode**
 - Model 1: 0%
 - Model 2: 88%
 - Model 3: 613%

- **PCIE**
 - Model 1: 0%
 - Model 2: 0%
 - Model 3: 88%

- **Storage BW**
 - Model 1: 0%
 - Model 2: 0%
 - Model 3: 0%

- **CPU Cores**
 - Model 1: 0%
 - Model 2: 0%
 - Model 3: 0%
Disaggregated Data Loading Tier
Disaggregated Data Loading Tier

[Diagram showing a network of tiles connected by DIPs and HBM modules, with labels for Batch 1A, 1B, 1C, and 1D.]
Disaggregated Resources

Resources Can Be Partitioned per Job
Dojo Supercomputer for ML Training

New integration enable high-bandwidth and performance

Uniform high-bandwidth enables full exploitation of parallelism by software

Vertically integrated I/O addresses all workload bottlenecks including data loading