AMD Ryzen™ 6000 Series for Mobile

Technology Overview

Jim Gibney
AMD Fellow and SOC Architect
AMD Ryzen™ 6000 Series for Mobile

"ZEN 3+" Core
Incredible Performance-per-Watt in x86 Mobile Processors

RDNA™ 2 Graphics
A Massive Leap in Performance For Integrated Notebook Graphics

6nm Technology
Higher Processor Performance With Leadership Power Efficiency

All-new Platform
(LP)DDR5, PCIe®4.0, USB4® 40Gbps, WiFi 6E + DBS, Bluetooth 5.2

Tech: TSMC N6 | Transistors: 13.1B | Die size: 210mm²

* See Endnotes: RMB-7, RMB-45, GD-149, GD-201
Up to
29 Hours of Battery Life

*29 hours of battery life evaluated with local video playback. See Endnote: RMP-39
AMD Ryzen™ 6000 Series for Mobile

“Rembrandt” SoC Topology on 6nm Manufacturing Process

16MB L3 Cache

RDNA2
(12 Compute Units)

8-core, 16-thread ‘Zen 3+’ CCD

128-Bit Flexible Memory Controllers
(Dual Channel with 2 Sub-Channels)

128-Bit Flexible Memory Controllers

DDR5 4800 MT/s
LPDDR5 6400 MT/s

16MB L3 Cache

Infinity Fabric™

Complete System Connectivity

Accelerated Multimedia Experience

Integrated Sensor Fusion Hub

* Certain capabilities and features dependent upon OEM enablement
5 Layers of Power Optimization

Core Architecture
New ‘Zen 3+’ Core, Heavily Optimized for Performance per Watt

Graphics Architecture
New ‘RDNA2’ Graphics Core, Architected and Configured for Perf/W

SoC Architecture
New Power Planes, New Power Architecture, Deep Partitioning

Platform Optimization
Component Optimizations + AMD Advantage™ Technologies

System Software
New Power Management Framework

Our Goal: Unmatched System Perf/W & Perf/mm²
Core Architecture

Updated “Zen 3+” Core with Over 50 New or Enhanced Features for Optimized Efficiency

PC6 Restore
Hardware-assisted wake from sleep for very fast response

Selective SCFCTP Save
on PC6 entry – look at previous core utilization before waking some cores unnecessarily

Delayed L3 Initialization
Can skip over L3 cache during wake to improve latency

Cache Dirtiness Counter
If cache misses are high, disallows DRAM power down to save power in the long run
Core Architecture

Updated “Zen 3+” Core with Over 50 New or Enhanced Features for Optimized Efficiency

CPPC per Thread Capability
Can communicate per-thread utilization to the OS now, not just per-core

CCX Light C-State
New shallow state with data fabric sleep and DRAM self-refresh

Enhanced CC1 State
New way to trigger sleep if a core isn’t being utilized

Summary
We now have deeper control over every individual processing thread’s power level and clock
This is how we secure more performance per watt from a single core complex
Incredible efficiency means driving up to 40% higher base clocks at 15 Watts, and that means more performance for AMD Ryzen™ 6000.

U-series Performance at 15 Watts

- Up to **1.17X** Generational Uplift in CPU Compute
- Up to **1.81X** Generational Uplift in Graphics
- Up to **3 hrs** Generational Battery Life Increase

AMD Ryzen™ 6000 Delivers The Most Processing Power Below 20 Watts

OEMs now drive platforms with higher TDPs, and AMD Ryzen™ 6000 can take advantage of that headroom for even more performance.

U-series Performance at 28 Watts

- Up to **1.3X** Generational Uplift in CPU Compute
- Up to **2X** Generational Uplift in Graphics
- ~the same winning Battery Life

AMD Ryzen™ 6000 Delivers More Compute Performance with the Same leading Battery Life at 28W

* See Endnotes: RMB-22, RMB-23
Graphics Architecture
AMD Radeon™ 600M Series

Architectural Improvements

- 50% Larger Execution Engine to 12x CUs (680M)
- 2X Larger Render Backend to 4x RB+ (680M)
- 2X Larger Graphics L2 Cache to 2MB (680M)
- Workgroup Processor: more resources applied to single workgroup
- Faster instruction issue – single cycle: lower latency
- Wave32 execution: support Wave64 through multi-cycling
- Deeper ALU pipeline to allow higher frequency

RDNA 2 Graphics Architecture for The First Time on a PC Processor
Graphics Architecture

AMD Radeon™ 600M Series

RDNA™ 2 Graphics Architecture Capabilities

- **GPU Max Frequency** Now up to 2.5 GHZ
 - GPU frequencies up to 300MHz higher YoY

- **Peak Performance Increased**
 - Up to 3.4 TFLOPS (FP32) / 6.8 TLOPS (FP16)

- **Massive Bandwidth Increase**
 - Thanks to DDR5/LPDDR5 support for up to 1.5x bandwidth

- **Incredible Power Efficiency**
 - Via both GPU and Display Controller

Radeon™ 600M Block Diagram

RDNA™ 2 Graphics Architecture Capabilities

- **GPU Max Frequency** Now up to 2.5 GHZ
 - GPU frequencies up to 300MHz higher YoY

- **Peak Performance Increased**
 - Up to 3.4 TFLOPS (FP32) / 6.8 TLOPS (FP16)

- **Massive Bandwidth Increase**
 - Thanks to DDR5/LPDDR5 support for up to 1.5x bandwidth

- **Incredible Power Efficiency**
 - Via both GPU and Display Controller

Radeon™ 680M
- 12 Cores, up to 2.4GHz, 4 RB+
- On AMD Ryzen™ 7 and 9

Radeon™ 660M
- 6 Cores, up to 1.9GHz, 2 RB+
- On AMD Ryzen™ 5

See Endnote: GD-151
Graphics Architecture

AMD Radeon™ 600M Series

Notebook Graphics Performance Generational Uplift

<table>
<thead>
<tr>
<th></th>
<th>Ryzen 6000 U Series vs Ryzen 5000 U Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>15W</td>
<td>Up to 81%</td>
</tr>
<tr>
<td>28W</td>
<td>Up to 100%</td>
</tr>
</tbody>
</table>

- **TimeSpy**

See Endnote: RMB-23

Significant Perf/W Increase vs. Last Gen
SoC Architecture
Updated SoC-wide Partitioning for Optimized Efficiency

Deep SoC Power Partitioning and Power States
Separate power partitions and states for graphics complex, display (including full display power off with PSR panel), AMD Infinity Fabric™/wireless management controller, and Southbridge/USB

New SoC-wide Save-restore Acceleration
Hardware assisted acceleration for very fast transitions between sleep and wake

Improved Clock and Power Gating
Clock gating now applicable to all IP. PHY clock and power gating improved as well
New SoC-wide Power Architecture

AMD Infinity Fabric™ C-states
- **DFC0** (Active)
- **DFC1** (Light)
- **DFC2** (Normal)
- **DFC3** (Deep)

Low Power Methodologies
- 6nm Process
- Optimized design libraries
- Low-power layout and packaging

Fast Sleep State Restore Accelerators
- CPU Cores
- Graphics
- AMD Infinity Fabric™
- Memory Controller
- Display Engine

Platform Power Control
- LPDDR5
- < 1W Display Support
- Panel self-refresh
- Panel delta updates
Ryzen 6000 Series has the Newest Platform Connectivity Support for Efficient Operation and Best User Experience
Efficient Platform
Display System Optimizations

New Panel Self Refresh State
Enables the SOC to progressively shut down the display controller for additional power savings with PSR/PSR-SU

SVI3 Regulator
Very Fast, more granular platform voltage supply control

< 1W Panel Support
Supports continued reduction of platform power through more efficient display technologies

DSC & FEC over External Displayport
Display Screen Compression, and Forward error correction. Reduces the number of eDP lanes required for a panel-side power savings

Freesync™ PSR-SU
Panel Self Refresh – Selective Update – does not update static portions of the screen that aren't changing

PSR-SU Rate Control
Reduces refresh rate during fullscreen video playback

Display Buffering
Size the buffer appropriately to have longer idle durations

Varibright for OLED
Adjusts content color parameters to save power on OLED embedded panels
Active Audio Noise Suppression
For the First Time on an x86 Processor Die

- Built-in Artificial Intelligence/Neural network noise suppression hardware
- Dramatically reduces unwanted background noise during audio/video calls
- On-SoC means an efficiency advantage over competing solutions
- Available only on OEM-enabled systems

Audio Noise Suppression

<table>
<thead>
<tr>
<th></th>
<th>Original Sound</th>
<th>With Noise Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby Crying & Ringtone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Endnote: GD-201
Power-saving AI-Noise Suppression System Block Diagram

Low-power Audio Processor performs offload of AI-noise suppression and acoustic echo cancellation

- Mic Array
- Audio Processor
- DRAM
- Fabric and DRAM Control
- GPU, ROC
- Core Complex

Model parameters stored in DRAM

Ryzen 6000 Series Processor

Power efficient DMA reads of model parameters into local SRAM

CPU, GPU, and rest of SoC can be in lowest power state

* See Endnote: GD-201
A Learning Power Model that Optimizes the User Experience

• **What:** New algorithm implemented through driver and power management firmware
• **How:** New power input and output trackers can customize performance/power/thermals/acoustics (PPTA) relative to every workload
• **Why:** Dynamically enjoy the benefits of Silent Profile acoustics or Performance Profile speed, without manually changing a power plan
Ryzen™ 6000 Processor Summary
Perfecting Thinner and Lighter

Energy Efficiency
Extract industry-leading perf/W in x86 design with “Zen 3+” core architecture

1080p
RDNA 2 Graphics
Make 1080p gaming more accessible to everyone, even thin and light designs

All-new Platform
Integrate the newest connectivity technologies for user convenience

Up to
29 Hours of Battery Life

Tech: TSMC N6 | Transistors: 13.1B | Die size: 210mm²

* 29 hours of battery life evaluated with local video playback. See Endnote: RMP-39
* See Endnote: RMB-45
Endnotes

RMB-7: Based on testing by AMD as of 12/14/2021. The integrated graphics performance of Ryzen™ 6000 Series processors can get up to 45 FPS average in the majority of 11 tested PC game titles at 1080p resolution with low settings, a threshold no other integrated graphics processor has reached before, including Intel Iris Xe graphics, and Ryzen™ 5000 Series graphics.

RMB-22: Based on testing by AMD as of 12/14/2021. CPU performance evaluated with a geomean of 9 multi-threaded content creation and CPU tests. GPU performance evaluated with 3DMark® Time Spy. Battery life evaluated with hours of continuous local 1080p video playback using the h.264 video codec. System configuration for Ryzen™ 7 5800U CPU/GPU performance: HP ProBook 635 Aero G8 configured with 2x8GB DDR4-3200 (22-22-22), Windows® 11 22000.282, Samsung 980 Pro 1TB SSD, 15W nominal processor TDP, GPU driver 27.20.21026, BIOS T83. System configuration for Ryzen™ 7 6800U CPU/GPU performance: AMD reference motherboard configured with 4x4GB LPDDR5-6400 (40-39-45-90), Windows® 11 22000.282, Samsung 980 Pro 1TB SSD, 15W nominal processor TDP, GPU driver 30.0, BIOS TRM0081D. System configuration for battery life duration: AMD reference motherboard(s), Ryzen™ 7 5800U @ 15W and 2x8GB LPDDR4, Ryzen™ 7 6800U @ 15W and 2x8GB LPDDR5, 1080p eDP PSR display with Varibright at 150 nits, Samsung 980 Pro 1TB SSD, WLAN enabled and disconnected, Windows 11 22000.282, BIOS 103BRC1 (5800U) and 090RC6INT (6800U). Video file: 1920x1080, 23.976 FPS, h.264.

RMB-23: Based on testing by AMD as of 12/14/2021. CPU performance evaluated with a geomean of 9 multi-threaded content creation and CPU tests. GPU performance evaluated with 3DMark® Time Spy. Battery life evaluated with hours of continuous 1080p local video playback using the h.264 video codec. System configuration for Ryzen™ 7 5800U CPU/GPU performance: HP ProBook 635 Aero G8 configured with 2x8GB DDR4-3200 (22-22-22), Windows® 11 22000.282, Samsung 980 Pro 1TB SSD, 15W nominal processor TDP, GPU driver 27.20.21026, BIOS T83. System configuration for Ryzen™ 7 6800U CPU/GPU performance: AMD reference motherboard configured with 4x4GB LPDDR5-6400 (40-39-45-90), Windows® 11 22000.282, Samsung 980 Pro 1TB SSD, 28W nominal processor TDP, GPU driver 30.0, BIOS TRM0081D. System configuration for battery life duration: AMD reference motherboard(s), Ryzen™ 7 5800U @ 15W and 2x8GB LPDDR4, Ryzen™ 7 6800U @ 28W and 2x8GB LPDDR5, 1080p eDP PSR display with Varibright at 150 nits, Samsung 980 Pro 1TB SSD, WLAN enabled and disconnected, Windows 11 22000.282, BIOS 103BRC1 (5800U) and 090RC6INT (6800U). Video file: 1920x1080, 23.976 FPS, h.264.

RMB-45: Based on testing by AMD and notebookcheck.com as of 02/07/2022 using the Cinebench nT benchmark / Sustained power limit for each system. Configuration for Ryzen™ 9 6900HS system: ASUS G14 configured with 2x8GB DDR5-4800, Windows 11 22000.282, 1TB SSD, Radeon 6800S graphics, sustained processor power limit of 35W. Data for Core i9-12900HK provided by notebookcheck.com: https://www.notebookcheck.net/Intel-Core-i9-12900HK-Processor-Benchmarks-and-Specs.589165.0.html. Configuration for Core i9-12900HK: MSI GE76 Raider configured with 2x16GB DDR5-4800, Windows 11, 2x1GB SSD, GeForce GTX 3080 Ti, sustained processor power limit of 110W. Results may vary.
Endnotes

RMP-39: Based on testing by AMD Labs as of 4/11/22. Battery life evaluated in hours of continuous 1080p local video playback with a HP Elitebook 865 G9 configured with an AMD Ryzen 7 PRO 6850U processor with Radeon 680M graphics, 76 WHr battery, 150 nit screen brightness, 256GB HDD, 8GB memory, Win 10 Pro, video resolution of 1920 x 1200 x 60 Hz and the power slider set to “better battery.” Actual battery life will vary based on several factors, including, but not limited to: product configuration and usage, software, operating conditions, wireless functionality, power management settings, screen brightness and other factors. The maximum capacity of the battery will naturally decrease with time and use.

GD-127: AMD FreeSync™ technology requires AMD Radeon™ graphics and a display that supports FreeSync technology as certified by AMD. AMD FreeSync™ Premium technology adds requirements of mandatory low framerate compensation and at least 120 Hz refresh rate at minimum FHD. AMD FreeSync™ Premium Pro technology adds requirements for the display to meet AMD FreeSync Premium Pro compliance tests. See www.amd.com/freesync for complete details. Confirm capability with your system manufacturer before purchase.

GD-149: Wi-Fi™ 6 and Bluetooth® 5.0 availability varies by laptop manufacturer and are system configuration dependent. Check with your laptop manufacturer for compatibility information.

GD-151: Boost Clock Frequency is the maximum frequency achievable on the GPU running a bursty workload. Boost clock achievability, frequency, and sustainability will vary based on several factors, including but not limited to: thermal conditions and variation in applications and workloads.

GD-201: AI-powered noise cancellation and USB4® require OEM enablement. Please check with your PC manufacturer prior to purchase.
Trademarks & Attributions

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale. GD-18.

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Ryzen, Radeon, Freesync, RDNA, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Thank You

to the global AMD teams
that made the Ryzen 6000 Processor possible
together we advance