Juniper's Express 5: A 28.8Tbps Network Routing ASIC and Variations

Chang-Hong Wu

Representing the Express 5 Development Team

Hot Chips 2022

JUNIPER Driven by Experience

Disclaimer

This presentation describes the intended capabilities of Juniper's silicon. No commitment is made or implied on delivering these features or products, which are subject to change at any time without notice.

No purchasing decision should be made contingent upon Juniper Networks delivering any feature or functionality depicted in this presentation.

What is Express 5?

Switches

Layer 2 Devices

Shallow Packet Buffers

Low Logical Scale

JUNIPer

Juniper Routing ASICs

Trio ASICs for MX

Multiple Packet Processing Engines Run-to-Completion

Flexibility / Logical Scale / ML Enabled

Latest generation: Trio 6

Express ASICs for PTX

Programmable Pipeline

Bandwidth and Energy Efficiency

Latest generation: Express 5

Express 5 Goals

Using Many Small-Form-Factor Systems

Scale Up

Using Fewer Large Modular Systems

7

Scale Out: Why 28.8Tbps Single ASIC for Express 5?

And not 19.2Tbps

36 Pluggable Optical Cages Fit in Standard 19" Racks

Common Radix: 32 or 36

36 x 800Gbps = 28.8Tbps

JUNIPer

Scale Up: Modular Chassis

Built using internal fabric connected components

Example: 16 Line Cards x 28.8Tbps per Line Card = 460.8Tbps Or 4608 x 100GbE ports

Ports

JUNIPer

Pitfalls of Naïve Packet-Based Fabric Design

- Ethernet devices for PFE and fabric
- Lack of speedup for scheduling
- Unbalanced distribution of flows
- Dramatically different sized packets
- Low utilization of links
- Low energy efficiency

Express 5: Cell-Based Fabric Design

- Even spray of small cells
- High link utilization
- Resiliency: retransmit-on-error
- VoQ based fabric protocol
- Low-latency cell switching
- High energy efficiency
- Interoperable with previous generation line cards

JUNIPE

11

Express 5

Building Blocks

X-Chiplet: eXpress forwarding chiplet

- TSMC 7nm
- 59 billion transistors
- 3 billion bits of on-die SRAM
- Multiple HBM2e Interfaces
- Multiple 112G Long Reach (LR) PAM4 SerDes
- Multiple 112G eXtreme Short Reach (XSR) PAM4 SerDes
- PCIe, Host Ethernet and other misc interfaces

JUNIPE

13

F-Chiplet: Fabric interface/switching chiplet

- TSMC 7nm
- 35 billion transistors
- 0.29 billion bits of on-die SRAM
- Multiple 112G Long Reach (LR) PAM4 SerDes
- Multiple 112G eXtreme Short Reach (XSR) PAM4 SerDes
- PCIe and other misc interfaces

Why CEI-112G-XSR-PAM4 In-Package Interconnect?

- Low power and area efficient
- High bandwidth on organic substrate channels
- Standardized by OIF (proposed by Juniper & partners)
- Allows for future Co-Packaged Optics

Express 5

ASIC Variations

ASIC 1: 28.8Tbps Network Routing Device

- 2 X-chiplets, connected through 112G-XSR interfaces, with >32Tbps of aggregate bandwidth
- 118 billion transistors, 6 billion SRAM bits
- Multiple HBM2e stacks
- 2 silicon interposers, each ~1.5x reticle size
- 85mm x 85mm organic substrate
- 6756 BGA balls, 1mm pitch, square patterns
- Bare dies with stiffener ring

Features

Speed	Scale	Flexibility	Security	Visibility	QoS
288 x 112G LR SerDes for	10+M entries Internet+ sized routing table	Programmable pipeline stages	high capacity	8M counters	Hybrid on-die and HBM packet buffer
36 x 800GbE or		New protocol support including SRv6, BIER		Native IPFIX export	
72 x 400GbE or	Unified packet forwarding database		Integrated MACSec on all ports at line rate	Inband Network Telemtry	Congested queues to HBM
144 x 200GbE or					HQoS support
288 x 100GbE or	Multi-dimensional scaling				
mixture of ports	Extendable to HBM				
Up to ~10 billion packets per second					

Packet Forwarding Pipelines

P4 Runtime Support

ASIC 2: Line Card Packet Forwarding Device with Fabric Interconnect

- 1 X-chiplet and 1 F-chiplet, connected through 112G-XSR interfaces, with >32Tbps of aggregate BW
- Multiple HBM2e stacks
- 2 silicon interposers on an organic substrate
- 14.4Tbps of Ethernet ports
- Same packet-forwarding functionality
- >16Tbps cell-based VoQ fabric interconnect
- Forward Error Correction and retransmit-on-error for the fabric links

ASICs 3 and 4: Cell-Based Fabric Switch Devices

- > 32Tbps cell-based fabric switch ASIC
- Dual F-chiplets connected by XSR

> 16Tbps cell-based fabric switch ASIC

JUNIPer

21

• Single F-chiplet

ASIC 5: 14.4Tbps Network Routing Device

- 1 X-chiplet, multiple HBM2e stacks, 1 silicon interposer
- 14.4Tbps of Ethernet ports

ASICs 6 and 7: Networking Devices without HBM

- 28.8Tbps of Ethernet ports
- 2 X-chiplets, connected by XSR

- 14.4Tbps of Ethernet ports
- 1 X-chiplet

ASIC 8: Future Integration of Co-Packaged Optics

Summary

Express 5 – High Bandwidth, High Scale, Programmable ASIC Family

JUNIPer

26

