Juniper’s Express 5: A 28.8Tbps Network Routing ASIC and Variations

Chang-Hong Wu
Representing the Express 5 Development Team

Hot Chips 2022
This presentation describes the intended capabilities of Juniper's silicon. No commitment is made or implied on delivering these features or products, which are subject to change at any time without notice.

No purchasing decision should be made contingent upon Juniper Networks delivering any feature or functionality depicted in this presentation.
What is Express 5?
Routers

Layer 3 Devices

Deep Packet Buffers

High Logical Scale

Switches

Layer 2 Devices

Shallow Packet Buffers

Low Logical Scale
Juniper Routing ASICs

Trio ASICs for MX
Multiple Packet Processing Engines
Run-to-Completion
Flexibility / Logical Scale / ML Enabled
Latest generation: Trio 6

Express ASICs for PTX
Programmable Pipeline
Bandwidth and Energy Efficiency
Latest generation: Express 5
Express 5 Goals
Scale Out
Using Many Small-Form-Factor Systems

Scale Up
Using Fewer Large Modular Systems
Scale Out: Why 28.8Tbps Single ASIC for Express 5?

And not 19.2Tbps

36 Pluggable Optical Cages Fit in Standard 19" Racks

Common Radix: 32 or 36

36 x 800Gbps = 28.8Tbps
Scale Up: Modular Chassis
Built using internal fabric connected components

Example: 16 Line Cards x 28.8Tbps per Line Card = 460.8Tbps
Or 4608 x 100GbE ports
Pitfalls of Naïve Packet-Based Fabric Design

- Ethernet devices for PFE and fabric
- Lack of speedup for scheduling
- Unbalanced distribution of flows
- Dramatically different sized packets
- Low utilization of links
- Low energy efficiency
Express 5: Cell-Based Fabric Design

- Even spray of small cells
- High link utilization
- Resiliency: retransmit-on-error
- VoQ based fabric protocol
- Low-latency cell switching
- High energy efficiency
- Interoperable with previous generation line cards
Express 5
Building Blocks
X-Chiplet: eXpress forwarding chiplet

- TSMC 7nm
- 59 billion transistors
- 3 billion bits of on-die SRAM
- Multiple HBM2e Interfaces
- Multiple 112G Long Reach (LR) PAM4 SerDes
- Multiple 112G eXtreme Short Reach (XSR) PAM4 SerDes
- PCIe, Host Ethernet and other misc interfaces
F-Chiplet: Fabric interface/switching chiplet

- TSMC 7nm
- 35 billion transistors
- 0.29 billion bits of on-die SRAM
- Multiple 112G Long Reach (LR) PAM4 SerDes
- Multiple 112G eXtreme Short Reach (XSR) PAM4 SerDes
- PCIe and other misc interfaces
Why CEI-112G-XSR-PAM4 In-Package Interconnect?

• Low power and area efficient
• High bandwidth on organic substrate channels
• Standardized by OIF (proposed by Juniper & partners)
• Allows for future Co-Packaged Optics
Express 5
ASIC Variations
ASIC 1: 28.8Tbps Network Routing Device

- 2 X-chiplets, connected through 112G-XSR interfaces, with >32Tbps of aggregate bandwidth
- 118 billion transistors, 6 billion SRAM bits
- Multiple HBM2e stacks
- 2 silicon interposers, each ~1.5x reticle size
- 85mm x 85mm organic substrate
- 6756 BGA balls, 1mm pitch, square patterns
- Bare dies with stiffener ring
Features

Speed
- 288 x 112G LR SerDes for
- 36 x 800GbE or
- 72 x 400GbE or
- 144 x 200GbE or
- 288 x 100GbE or
- mixture of ports
- Up to ~10 billion packets per second

Scale
- 10+M entries Internet+ sized routing table
- Unified packet forwarding database
- Multi-dimensional scaling
- Extendable to HBM

Flexibility
- Programmable pipeline stages
- New protocol support including SRv6, BIER
- Multi-dimensional scaling
- Extendable to HBM

Security
- High performance/high capacity packet filters
- Integrated MACSec on all ports at line rate

Visibility
- 8M counters
- Native IPFIX export
- Inband Network Telemetry
- Congested queues to HBM
- HQoS support

QoS
- Hybrid on-die and HBM packet buffer
- Congested queues to HBM
- HQoS support
Packet Forwarding Pipelines

Ingress
- Ethernet MAC
- MACsec
- Parser
- Source Lookup + Tunnel Termination
- Filter
- Dest Lookup
- Next Hop Processor
- Ingress Rewrite
- Fabric Interface

Shared Packet Buffer

Unified Packet Forwarding Database

Egress
- Fabric Interface
- Parser
- Descriptor Processor
- Header Build Egress Filter and Rewrite
- MACsec
- Ethernet MAC

Task Specific Microcode Programmable Stages

P4 Runtime Support
ASIC 2: Line Card Packet Forwarding Device with Fabric Interconnect

- 1 X-chiplet and 1 F-chiplet, connected through 112G-XSR interfaces, with >32Tbps of aggregate BW
- Multiple HBM2e stacks
- 2 silicon interposers on an organic substrate
- 14.4Tbps of Ethernet ports
- Same packet-forwarding functionality
- >16Tbps cell-based VoQ fabric interconnect
- Forward Error Correction and retransmit-on-error for the fabric links
ASICs 3 and 4: Cell-Based Fabric Switch Devices

- > 32Tbps cell-based fabric switch ASIC
- Dual F-chiplets connected by XSR
- > 16Tbps cell-based fabric switch ASIC
- Single F-chiplet
ASIC 5: 14.4Tbps Network Routing Device

- 1 X-chiplet, multiple HBM2e stacks, 1 silicon interposer
- 14.4Tbps of Ethernet ports
ASICs 6 and 7: Networking Devices without HBM

- 28.8Tbps of Ethernet ports
- 2 X-chiplets, connected by XSR

- 14.4Tbps of Ethernet ports
- 1 X-chiplet
ASIC 8: Future Integration of Co-Packaged Optics
Summary
Express 5 – High Bandwidth, High Scale, Programmable ASIC Family

X-Chiplet

112G-XSR

F-Chiplet

28.8Tbps Routing ASIC

28.8Tbps Networking ASIC w/o HBM

14.4Tbps Routing ASIC

14.4Tbps Networking ASIC w/o HBM

>16Tbps Cell-Based Fabric Switch ASIC

>32Tbps Cell-Based Fabric Switch ASIC

Future CPO Integration

Scale Out

Scale Up

© 2022 Juniper Networks
Thank you