AMDA

AMD 400G Adaptive SmartNIC SoC

Technology preview

Jaideep Dastidar

Co-authors: David Riddoch, Jason Moore, Steve Pope, Jim Wesselkamper

Hot Chips 2022

Agenda

Overview	 Motivating factors behind SmartNICs AMD 400G Adaptive SmartNIC SoC Objectives
Solution – AMD 400G Adaptive SmartNIC SoC	 Offload Acceleration Blocks for Host, Network, and Embedded Processing Adaptive Extensions Pervasive Security and Confidential Computing
Use Case Examples	 OVS Offload VirtIO Net Offload Host-Attached Adaptive Network Offload Accelerator Network Attached Adaptive NVMe Storage Endpoint
Summary	
Q&A	

Overview

Motivations for Adaptable, Intelligent Infrastructure

Intelligent Infrastructure for Next Gen Applications

Next Generation Bandwidth 400Gb Data Processing

Infrastructure Acceleration Maximize CPU revenue potential

High Security Multi-tenant Isolation and Protection

New Trends Expose Current Infrastructure Challenges

SmartNIC Solution Space

We are at an Architectural Inflection Point

Performanci

FICXIBILIT

Tug-of-War between

ASIC-like Fixed Function Logic

Frequent vs occasional functions

Embedded Processor Cores

Workload flexibility vs processing offload

FPGAs or Programmable Logic

Adapting new and existing functions

Security

AMD 400G Adaptive SmartNIC SoC Objectives

Balanced Architecture

- Architect an adaptive SoC for the SmartNIC domain
- Strike the right balance between the heterogeneous elements
- Present a unified software view of the heterogeneous element SoC

Performance and Adaptability

- Latest Interfaces/Speeds: 112G Ethernet, PCIe Gen5, CXL 2.0, LPDDR5/DDR5
- Adaptive Interface APIs for evolving workloads and customization

Security

- Latest security standards: PCIe, OCP and NIST
- Symmetric and asymmetric crypto offload for data encryption and key exchange
- Physical and logical isolation for confidential compute

AMD 400G Adaptive SmartNIC SoC

Technology preview

Tightly Coupled SmartNIC Blocks

CPM5N: Host Subsystem Overview

PCIe Gen 5 or CXL 2.0 host connection

Composable DMA (CDx)

Host DTE (Data Transform Engine)

HNICX: Networking Subsystem Overview

Network DTE (Data Transform Engine)

MAC

Memory Subsystem Overview

8x LPDDR5 / DDR5 Controllers

- 32-bit DDR5-5600 with ECC or
- 16-bit, 32-bit, or dual 160-bit LPDDR-6400 with ECC
- Inline Memory Encryption
 AES-GCM / AES-XTS with DPA countermeasures

DDR Controller Bypass Mode for SCM

- PHY also supports other standards such as MIPI
- Custom PL Controllers for Storage Class Memory

Inline Memory Encryption

8x 32b LPDDR5/DDR5 Controllers

LPDDR5/DDR5 PHY

Processing Subsystem (PSX) Overview

CPM5N PL HNICX PSX LP/DDR

	LPD			FPD					
4 real-time cores arranged as Two	Cortex-R52 32KB I/D\$ 128KB TCM	Cortex-R52 32KB I/D\$ 128KB TCM	Cortex-A7 64KB I\$/ 512KB L	/D\$	Cortex-A78AE 64KB I\$/D\$ 512KB L2\$	Cortex-A78AE 64KB I\$/D\$ 512KB L2\$	64ł	ex-A78AE (B I\$/D\$ 2KB L2\$	High Pe Domain
2-core Clusters w/ Tightly-Coupled	LS/Split	LS/Split	LS/Spli	it	LS/Split	LS/Split	L	S/Split	16 Applic
Memory	Cortex-R52 32KB I/D\$ 128KB TCM	Cortex-R52 32KB I/D\$ 128KB TCM	Cortex-A7 64KB I\$/ 512KB L	/D\$	Cortex-A78AE 64KB I\$/D\$ 512KB L2\$	Cortex-A78AE 64KB I\$/D\$ 512KB L2\$	64ł	ex-A78AE (B I\$/D\$ 2KB L2\$	arranged 4-core Clu w/Crypto
	Interconnect		L3 Cach 2MB		L3 Cache 2MB	L3 Cache 2MB		Cache 2MB	
	1MB OCM	DMA							
	GbE (2)	CANFD (2)	Coherency Mesh Network						
	USB2 (2)	UART (2)	LLC 16MB						
	SPI (2)	I2C+I3C (2)							
	MIO	Timers	Core	System	n Interc	onnect	GIC	PKI	Public Key TLS 1.3
	PSM PS Mgmt	Debug PS CoreSight	Sight	MMU					Offload Ac

Tight Coupling between CPM5N + PSX

256Gbps Host MMIO to Embedded Cores Data Flow w/ Cache Injection via PCIe/CXL.io Endpoint 256Gbps

Embedded Cores to Host Data/Doorbells Processing Subsystem (PSX)

Tight Coupling between Prog. Logic ↔ PSX

Security and Confidential Compute Across Domain-specific Accelerators

mirror object to mirror rror_mod.mirror_object eration == "MIRROR_X": rror_mod.use_x = True rror_mod.use_y = False rror_mod_use_z = False operation == "MIRROR y" rror_mod.use_x = failse rror_mod.use_y = Inte rror_mod.use_z = False **Operation** == "MIRROR Z" **rror_mod_use_x** = False rror_mod.use_y = False **Pror_mod.use_z** = True ob.select= ntext.scene.objects.actim "Selected" + str(modifier bpy.context.selected_obj ata.objects[one.name].sel int("please select exactle i - OPERATOR CLASSES (ypes.Operator):

x mirror to the selected x mirror to the selected ject.mirror_mirror_x" ror X"

ontext): oxt.active_object is not

Pervasive Security

Layers of Security

CHECK

Secure Boot, Key Exchange and Attestation AMD keys, SmartNIC owner keys, and SmartNIC tenant keys

PROTECT

Memory and Peripheral Protection Units SoC-wide hardware firewalls for tenants and accelerators

SHIELD

Secure Data in Flight, at Rest, in Use

Encryption for data, host/network interfaces, and DRAM Secure monitors for external, internal, physical attacks Crypto engines with DPA countermeasure protection

Use Case Examples

Full OVS Offload

- Packet switching and packet modifications
- Overlay encapsulation and decapsulation
- Firewall offload including connection tracking / NAT
- Packet monitoring
- Uses BCAM / TCAM to match packet flows
- These flow tables stored in DRAM (with internal caching)
- OVS control plane remains in software running on the host

VirtlO-net Support

Device Natively Supports VirtIO Queues

Two Deployment Models

- Bare Metal VirtIO
- vDPA
 - (Virtual Data Path Acceleration)

PCIe Endpoint 400G SmartNIC w/ with Host Storage and Network Offload

- Standard Ethernet Packet Flow
- Custom Header, Encapsulation, or Encryption Flow
- Host Connection with Advanced Switch Hot Plug

PCIe Endpoint 200G SmartNIC w/ 2 Gen5 x4 NVMe SSDs

- Host endpoint connection NVMe virtualization
- SmartNIC Root-Port connections for dual-NVMe SSDs w/ AES-XTS offload acceleration
- 2x 100G or 4x 50G network connection

PCIe Root Complex 400G NVMe Storage Node

- Network-attached storage appliance
- SmartNIC Root-Port connections for quad-NVMe SSDs
 w/ AES-XTS offload acceleration
- 2x 200G or 4x 100G remote storage connections

Summary

Performance & Resources

Manufacturing Technology

Architectural Resources

Host subsystem	PCIe Gen5 x16 PCIe CMA/DOE/IDE CXL v2.0
Network subsystem	2x 200G Ethernet Virtual switch offload Stateless offloads
Application Processing Subsystem	16x A78-AE 24MB Shared Cache
Real-time Processing Subsystem	4x ARM R52
PKI (TLS1.3 Offload Engine)	Yes
DDR subsystem	8x 32b LPDDR5/DDR5 ECC Inline encryption 1.638Tb/s LPDDR5 BW

SmartNIC SoC Performance[†]

Programmable logic packet rate ¹	400Mpps Ingress + 400Mpps Egress
Host ⇔ Network packet rate ²	400Mpps RX + 400Mpps TX
Full Virtio.NET offload BW ³	400Gbps RX + 400Gbps TX
AES-XTS offload BW ⁴	800Gb/s
AES-GCM offload BW ⁵	800Gb/s

Thank You

To the worldwide AMD AECG team and all the other AMD teams who made the AMD 400G Adaptive SmartNIC possible

Their creativity, ingenuity, and unwavering dedication to the project has made for a unique Adaptive SmartNIC DSA

Endnotes

+ SmartNIC SoC performance claims are based on simulation results of pre-silicon models with AMD traffic generators used to emulate external port traffic behavior as of August 23, 2022. Actual performance of production silicon may vary.

1. Interface packet rate between Programmable logic and the Network subsystem

- 2. Sustained TX and RX packet rate for 64B packets
- 3. Sustained TX and RX BW with 1500B payload per packet
- 4. Sustained BW for 1KB packets; Encrypt-only, Decrypt-only, or 400Gb/s Encrypt + 400Gb/s Decrypt with Network Interface configured to 2x200G Ethernet ports
- 5. Sustained BW for 1KB packets; 400Gb/s Encrypt + 400Gb/s Decrypt with Network Interface configured to 2x200G Ethernet ports
- 6. #4 and #5 were also measured concurrently enabled

Disclaimer and Attribution

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, the Xilinx logo, Versal, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.

AMD together we advance_

Thank You for Participating