Trinity: End-to-End In-Database Near-Data Machine Learning Acceleration Platform for Advanced Data Analytics

<u>Ji-Hoon Kim¹⁾, Seunghee Han¹⁾,</u> Kwanghyun Park²⁾, Soo-Young Ji³⁾ and Joo-Young Kim¹⁾

In-DBMS Data Analytics

Three Important yet Independent Technology Trends

Trinity: In-Database, In-Storage Platform

Full Stack System for Near-Data-based In-DBMS ML Inference

Trinity: In-Database, In-Storage Platform

Full Stack System for Near-Data-based In-DBMS ML Inference

Trinity shows up to 57.18x faster query processing speed than CPU-based DBMS

HOTCHIPS 2022

Trinity: End-to-End In-Database Near-Data Machine Learning Acceleration Platform for Advanced Data Analytics

Computational Storage Device

- New Hardware Backend: <u>Samsung's SmartSSD</u>
 - Xilinx Kintex UltraScale+ FPGA, 4GB DRAM and 3.84TB NAND flash
 - Direct FPGA-to-SSD data access using internal PCIe switch

Software Stack for Trinity

- Seamless Integration of SmartSSD in DBMS
 - Extended SW stack \rightarrow extended analyzer¹⁾ + optimizer²⁾

- 1) Converting query information to the HW data format
- 2) Making runtime offloading decision to select an optimal HW backend

Extended Query Optimizer

Performance Cost Model

- Determining optimal hardware backend (SmartSSD vs CPU)
- Showing <u>5.3%</u> & <u>12.97%</u> average error + <u>96% offloading accuracy</u>

Overall Architecture of i-DPA*

1. Database Page Decoder

- Page & data processing unit
- Page-level parallelism

2. Database Tuple Binder

- Dynamic tuple binding
- Tuple-level parallelism

3. Heterogeneous Core Arch.

- Reconfig. on-chip interconnect
- Task-level parallelism

* i-DPA = in-Database Processing Accelerator

Database Page Decoder

- Direct Tuple Extraction from Database Page
 - Removing host interaction → Keep BW benefit of in-storage processing
 - Faster page decoding w/ page-level parallelism ©

Database Tuple Binder

Dynamic Tuple Binding

- Dynamically varying tuple packing density according to the tuple size
- Tuple-level parallelism \blacktriangle & hardware utilization \blacktriangle \bigcirc

Query Processing Core

Heterogeneous Core Architecture

- Reconfigurable on-chip interconnect → Enabling flexible data streaming ☺
- Task-level parallelism across the computing units

HOTCHIPS 2022

FPGA Implementation Result

System Setup & FPGA Implementation Result

	Specifications				
FPGA	Kintex Ultrascale+				
Freq.	170MHz				
	Resource Utilization				
	LUT	FF	BRAM	URAM	DSP
Interface	128665	183077	311.5	8	9
Core0	102672	92142	15	32	342
Core1	110092	92437	15	32	342
Others	10740	9757	22	0	10
Utilization	67.4%	36.1%	46.9%	56.3%	35.7%

End-to-End Trinity Evaluation

- Evaluate Against CPU-based DBMS Platform
 - <u>0.85x 57.18x</u> faster query processing than CPU-based DBMS
 - <u>15.21x</u> faster than CPU-based DBMS on average

HOTCHIPS 2022

Trinity: End-to-End In-Database Near-Data Machine Learning Acceleration Platform for Advanced Data Analytics

Scaling-up with Multiple SmartSSDs

- Scale-up the Overall System
 - SmartSSD: easy to scale-out the number of devices w/ U.2 form factor
 - Deploying 4 SmartSSDs → <u>200x faster</u> than CPU-based DBMS

Uniformly distribute database

- With 2 SmartSSD → 1.85x performance gain
- With 4 SmartSSDs 3.66x performance gain

Linear Performance Improvement → Overall 200x Speedup Achieved

Conclusion

- 1. Full Stack System for In-DBMS Advanced Data Analytics
 - 57.18x faster query processing than CPU-based DBMS
- 2. Software Stack (PostgreSQL+) for SmartSSD Integration
 - Dynamic offloading decision → 96% accuracy
- 3. Near-Storage based Hardware Accelerator (i-DPA)
 - Direct data page decoding & abundant parallel processing (3-levels)

Trinity: In-Database, Near-Data Machine Learning Acceleration Platform for advanced Data Analytics

Thank You!

- Questions? Feel Free to Contact Me!
 - E-mail: jihoon0708@kaist.ac.kr
 - LinkedIn: https://www.linkedin.com/in/ji-hoon-kim-860429225/
 - Slack: Trinity: In-Database Near-Data ML Acceleration platform