Large-scale Graph Neural Network Services

through Computational SSD and In-Storage
Processing Architectures

Miryeong Kwon, Donghyun Gouk, Sangwon Lee, Myoungsoo Jung

Computer Architecture and Memory systems Laboratory

KAIST LAMELaD &

First Step

High-level summary of talk

GNN have shown GNN preprocessing is Now, we need
great success missed out on “HolisticGNN"
75
GNN GNN
} 'n. } {preprocessing} + {algorithm}
_i’—@ High accuracy Current GNN works By leveraging
are only focusing Computational

, Well accelerated on GNN algorithms SSD

KAIST T

Graph Neural Networks (GNN)
Why is it emerging?

Conventional CNN Model Emerging GNN Model
i How can GNN

algorithm learn
: i) the relationship?

Regular data in Euclidean space Irregular data in non-Euclidean space
(Learning information: "Euclidean distance”) (Learning information: “Relationship”)

Response of CNN model

D @\

Response of GNN model

%ﬂ r BT

N

“Women near the sofa”

KAIST

Characteristic: “pain”

llpainll

Image source: Personalized Image Retrieval with Sparse Graph Representation Learning (KDD’20)

(&

Graph Neural Networks (GNN) What do we have to

GNN algorithm do [p3forts ENIN
algorithm execution? ,

Input #1: Aggregation #2: Transformation

0 \@

>
LY i ar
Graph structure } /’/n \\ }
Q [
¢ i UL
=]

9 0.1/0.81 1 |0.2] 0 [1 |0.8]|0.7] 1
n 01101110801 1]02]|0
“ loalos| 1 |0.1]02]0.8[02] 0 |04 [0.2]0.3]0.2]0.8]0.5]0.4]0.6[0.9]0.5] [0.1]0.8[1]0.2[o[1]0.8[0.7] 1| [0.4]0.8]1]0.1]0.2[0.8]0.2] 0 [0.4|

0.2|0.3|0.2{0.8|0.5|0.410.6|0.9]0.5

o
v

3y

q

v

Node embedding

KAIST 4

(&

Graph Neural Networks (GNN)
GNN algorithm

Input
P € \We have to prepare

neighbor-oriented

‘ \ graph structure
=

Y ¢

b ur 4ar
Graph structure

0.110.8(1 {0.2] 0 [1 {0.8|0.7| 1

a
N

Bvlo]1]o1]1]oslor]1]02]0 . O We need small
<»|04[08] 1 |0.1]0.2|0.8[0.2| 0 |0.4 input data Wh'_Ch can
&} 10.2/0.3]0.2{0.8]0.5{0.4{0.6]0.9]0.5 be loaded into
, accelerator memor
Node embedding y

(&

GNN Preprocessing

Graph preprocessing: to prepare neighbor-oriented graph structure

Graph preprocessing
converts edge array to
“adjacency list” which is

neighbor-oriented

“—Q 10»—0 1?»— |
>—0O0—3 600 o/n \.

I (=
L G4 QD

0o 060
1?»49 Qie n—iob

KAIST &

Graph structure is stored
as “edge array” which is
update-friendly

GNN Preprocessing

Batch preprocessing: to prepare small graph

Insight: “Node sampling”
can significantly reduce the
amount of data to process

\ without an accuracy loss \

© ~
4 "N/

KAIST .

GNN Preprocessing

Batch preprocessing: to prepare small graph

Graph structure sampling

Embedding sampling

&
v

) 4
DO

sdrdbobde 6 4 o

aN g

KAIST .

(&

End-to-End GNN Inference

Visualization

‘ Host CPU GPU
I:[SSD 1101010100111001001111 Host DRAM | 1101010100 | GPU DRAM
| I I
Edge n—0 6—0 o5—0 /n
array (Ob_ﬂ l'\ 1?» QOD_Q "u
o |™ e o o6 o%& ‘L l§ |ﬂ/“L §
1?»—@ @_o [\ .O, 0 QOD
Entire edge array Entire ad). list Sampled ad;. list
e :
INg — i
txt @
S
“Entire embed Sampled embed
KAIST . i

End-to-End GNN Inference

Execution time analysis

Host CPU

GPU

Oops.. Graph preprocessing and
embedding I/0 is a dominant
contributor to the end-to-end GNN
inference (NOT pure GNN inference!)

Graph size (# of edges)

>
SSD 1101010100111601001111 Host DRAM | 11010108160 | GPU DRAM
I | ' 9100'...----
' 0575 5
Edge . o 7 :
aray | | Graph preprocessing { 33\450: - :
' (CPU) , Batch ¢ Pure LI Qo IHAH
g ~ prepro ™" infere Eg 0- =il OOM
| _cessing [| nce = UTc o =" =0 X GO @ X —
Emb h = @©
daing /0 C(CPY). (GPU) 2 SPEZC20 222 9TC
txt CPU) . — =N ©9D T=TES
(s CEOO0S o2 Jd>5®X3
Entire embed dmpiech ermbed %"5 O-O Oag + e ge B—_'
CJ
KAIST L

Design Questions
Then, what does GNN acceleration look like?

Store graph directly as a
) neighbor-oriented format

Graph preprocessing

(CPU) (But also, update-efficient)
Embedding 1/0 Q Process end-to-end GNN
(CPU) inference near storage

(&

KAIST ;

HolisticGNN
Adopts the concept of computational SSD (CSSD)

CSSD decouples the
compute unit from the
storage resources
unlike conventional ISP
(In-Storage Processing)

KAIST 12

(e

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Our proposed
Hardware/Software co-
programmable framework

Is executing on FPGA

KAIST

)

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Shell region is for
essential HW logics of

HolisticGNN Shell User |
1 DRAM | ¢ ,I O3
brAM 5 Ctrl. Core
|
DMA
engine I Bus
Pé:lle e—>le—>Xbuilder
Engine
—1 PCle
>D F switch | ““““
.~ J
KAIST i

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

User region is for GNN
__ Iinference acceleration
(user-customizable) User

Co-
O3 EE processor
CO re ports

I
System
Bus EE bus lanes

Xbuilder
Engine

(&

KAIST s

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

HolisticGNN also
provides three types of
algorithm accelerators

User
Co-

Octa-core | Cora0 | 3 C%?e E!E prggﬁzor

System
Bus EE bus lanes

Many SAs“C'e

Systolic Systolic Xbuilder
S array Engine
Hetero
Systolic | ey Vector |
array | processor
CJ
IST —

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

O3 core executes
GraphStore and
GraphRunner

O3
Core

KAIST

*
*
*
*
*
*
*
*
*
*
*
*
*
*
.0
*

*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

17

)

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Edge array

A—0 60
&—60 00—
Q—ﬂ q?»_@@
1?»_@ 0—0

Embedding

GraphStore converts
edge array to

KAIST

O3
Core

SSD

Adjacency

adjacency list and

store it to SSD

S ODOD>D

Embedding

14
*
*
*
*
*
*
.0
*

(&

18

HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

GraphRunner
processes both
GNN preprocessing
and algorithm

GraphRunner can
access graph data via
GraphStore APIs

KAIST 19

(&

Experimental Setup
HolisticGNN prototype

KAIST

14nm FPGA

(e

Evaluation Results
End-to-End latency comparison

Small graph:
1.69x RTX 1060 [] GTX 3090 [HolisticGNN
AMD Ryzen DDR4-2666
o _10.03
S
- o
Yy —— . X |
GTX 1060 Tamis= O 3 0.02
| gL i) =
L 0 CoET=N=NXO O =
W 505838838 v 10.01
. 'eb) ()] m‘-l— il LS .
O £5°T 0O0asPQ
7 & -0.00

Large graph

(&

KAIST 3

Evaluation Results
Energy Consumption

33.2x and 16.3x
better than GTX Due to low-power

3090, RTX 1060 RTX 1060 [] GTX 3090 [l HolisticGNN computing of

FPGA
’_‘;1' Small graph §20_ _ Large graph = 100
\x_, —" J B = A~~~
> 2 802
S 0)10" | X ~
| & >,
O 0 O A 0 05
cl cr==p=9y C 0 roo—0— ~ o
L S$EZSZS w FILSET \ 40 2
2255 ©g R Ry 0
EL32 g CSo5®X3 20
£5°5 o8 2ooox2 N[NNI I,

KAIST 2

(&

Demonstration
GNN execution in our HolisticGNN prototype

RTX3090

Proposed HolisticGNN High-Performance GPU

310ms 34929ms
40ms 78ms
+ 11lms + 794ms

361ms 35801ms
99.17 times faster

FPGA Terminal

Demonstration Video Link:

(&

KAIST

https://www.youtube.com/watch?v=b5fZBESH1TM

Conclusion

HolisticGNN is a “hardware/software co-
programmable framework for computational SSDs”

1) Holistic solution for both GNN algorithm and preprocessing
2) Fast and energy-efficient near-storage inference infrastructure

3) Easy-to-use and user-customizable

(&

KAIST

ank You

'Contact M1ryeong Kwon (mkwon@camelab org)

Original publication: M. Kwon, D. Gouk, S. Lee, and M. Jung. USENIX FAST 2022.
Hardware/Software Co-Programmable Framework for Computational SSDs to Accelerate Deep
Learning Service on Large-Scale Graphs (https://www.usenix.org/system/files/fast22-kwon.pdf)

.
l(AI ST !T! Acknowledgment: This research is supported by Samsung Research Funding & Incubation Center
of Samsung Electronics (SRFC-1T2101-04). Myoungsoo Jung is the corresponding author.

https://www.usenix.org/system/files/fast22-kwon.pdf

	Large-scale Graph Neural Network Services�through Computational SSD and In-Storage Processing Architectures
	First Step
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	Graph Neural Networks (GNN)
	GNN Preprocessing
	GNN Preprocessing
	GNN Preprocessing
	End-to-End GNN Inference
	End-to-End GNN Inference
	Design Questions
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	HolisticGNN
	Experimental Setup
	Evaluation Results
	Evaluation Results
	Demonstration
	Conclusion
	Slide Number 25

