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First Step

High-level summary of talk

GNN have shown GNN preprocessing is Now, we need
great success missed out on “HolisticGNN"
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Graph Neural Networks (GNN)
Why is it emerging?

Conventional CNN Model Emerging GNN Model
i How can GNN

algorithm learn
: i) the relationship?

Regular data in Euclidean space Irregular data in non-Euclidean space
(Learning information: "Euclidean distance”) (Learning information: “Relationship”)

Response of CNN model
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Response of GNN model
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Characteristic: “pain”
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Image source: Personalized Image Retrieval with Sparse Graph Representation Learning (KDD’20)
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Graph Neural Networks (GNN) What do we have to

GNN algorithm do [p3forts ENIN
algorithm execution? ,

Input #1: Aggregation #2: Transformation
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Node embedding
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Graph Neural Networks (GNN)
GNN algorithm

Input
P € \We have to prepare

neighbor-oriented

‘ \ graph structure
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GNN Preprocessing

Graph preprocessing: to prepare neighbor-oriented graph structure

Graph preprocessing
converts edge array to
“adjacency list” which is

neighbor-oriented
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Graph structure is stored
as “edge array” which is
update-friendly




GNN Preprocessing

Batch preprocessing: to prepare small graph

Insight: “Node sampling”
can significantly reduce the
amount of data to process

\ without an accuracy loss \
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GNN Preprocessing

Batch preprocessing: to prepare small graph

Graph structure sampling

Embedding sampling
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End-to-End GNN Inference

Visualization
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End-to-End GNN Inference

Execution time analysis

Host CPU

GPU

Oops.. Graph preprocessing and
embedding I/0 is a dominant
contributor to the end-to-end GNN
inference (NOT pure GNN inference!)

Graph size (# of edges)
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Design Questions
Then, what does GNN acceleration look like?

Store graph directly as a
) neighbor-oriented format

Graph preprocessing

(CPU) (But also, update-efficient)
Embedding 1/0 Q Process end-to-end GNN
(CPU) inference near storage
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HolisticGNN
Adopts the concept of computational SSD (CSSD)

CSSD decouples the
compute unit from the
storage resources
unlike conventional ISP
(In-Storage Processing)
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Our proposed
Hardware/Software co-
programmable framework

Is executing on FPGA
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Shell region is for
essential HW logics of
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

User region is for GNN
__ Iinference acceleration
(user-customizable) User

Co-
O3 EE processor
CO re ports

I
System
Bus EE bus lanes

Xbuilder
Engine
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

HolisticGNN also
provides three types of
algorithm accelerators

User
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

O3 core executes
GraphStore and
GraphRunner
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

Edge array
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Embedding

GraphStore converts
edge array to
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HolisticGNN

"Hardware/Software Co-Programmable Framework” for CSSDs

GraphRunner
processes both
GNN preprocessing
and algorithm

GraphRunner can
access graph data via
GraphStore APIs
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Experimental Setup
HolisticGNN prototype
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14nm FPGA
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Evaluation Results
End-to-End latency comparison

Small graph:
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Evaluation Results
Energy Consumption

33.2x and 16.3x
better than GTX Due to low-power

3090, RTX 1060 RTX 1060 [] GTX 3090 [l HolisticGNN computing of
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Demonstration
GNN execution in our HolisticGNN prototype

RTX3090

Proposed HolisticGNN High-Performance GPU

310ms 34929ms
40ms 78ms
+ 11lms + 794ms

361ms 35801ms
99.17 times faster

FPGA Terminal

Demonstration Video Link:
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https://www.youtube.com/watch?v=b5fZBESH1TM

Conclusion

HolisticGNN is a “hardware/software co-
programmable framework for computational SSDs”

1) Holistic solution for both GNN algorithm and preprocessing
2) Fast and energy-efficient near-storage inference infrastructure

3) Easy-to-use and user-customizable
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ank You

'Contact M1ryeong Kwon (mkwon@camelab org)

Original publication: M. Kwon, D. Gouk, S. Lee, and M. Jung. USENIX FAST 2022.
Hardware/Software Co-Programmable Framework for Computational SSDs to Accelerate Deep
Learning Service on Large-Scale Graphs (https://www.usenix.org/system/files/fast22-kwon.pdf)
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