DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

Seongmin Hong¹, Seungjae Moon¹, Junsoo Kim¹,

Sungjae Lee², Minsub Kim², Dongsoo Lee², and Joo-Young Kim¹

¹CastLab, School of EE, KAIST,

²NAVER CLOVA

Abstract

- DFX: a low-latency multi-FPGA appliance for accelerating transformer-based text generation
 - DFX is a multi-FPGA appliance that accelerates transformer-based text generation
 - DFX adopts model parallelism to efficiently process the large-scale language model
 - Xilinx Alveo U280 data center accelerator card provides high performance with low-cost
 - FPGA-to-FPGA communication is enabled by QSFP cable at 100 Gb/s

Motivation

Transformer-based Text Generation

Text generation

- Automatic generation of human-readable text by a computer
- Example: dialogue system, topic-to-essay generation, and code generation

• Generative Pre-trained Transformer (GPT)

- State-of-the-art model in natural language processing that scales up to 175B parameters
- High-quality text generation and remarkable inference accuracy for benchmarks (e.g., 86.4% for LAMBADA)

Challenges of Transformer-based Text Generation

- 1) System **bottleneck** in the generation stage due to its sequential characteristic
- 2) Massive model parameters and computational requirements
- 3) Lack of deployable hardware with end-to-end capability for GPT inference in datacenters

DFX Architecture

DFX Appliance Architecture

- Multi-FPGA appliance for the acceleration of text generation
- Intra-layer model parallelism for large models
- Compute core (accelerator) that supports GPT's end-to-end operations

Model Parallelism

- Intra-layer model parallelism can reduce the latency of matrix operations
 - **Multi-head attention:** model parameters are divided head-wise
 - Fully-connected layer: model parameters are divided column-wise

Core Architecture

- Compute core supports GPT's end-to-end operations
 - Matrix processing unit: matrix multiplication, masked matrix multiplication
 - Vector processing unit: softmax, layer normalization, residual
 - **DMA:** designed to maximize the HBM's BW based on types of parameters (weight, bias, key, value, etc.)

Lightweight Router

- FPGA-to-FPGA interconnection in a ring network
 - Synchronization is necessary after executing distributed matrix multiplication
 - Network overhead is minimized with a simplified protocol

Evaluation

DFX Implementation

- DFX server prototype includes four Xilinx Alveo U280 FPGAs
- FPGA layout and resource utilization are optimized for HBM bandwidth usage

DFX Evaluation Results

Methodology

- **DFX:** one U280 FPGA, two U280 FPGAs, and four U280 FPGAs
- **Baseline systems:** one V100 GPU, two V100 GPUs, and four V100 GPUs
- **Models:** GPT-2 (345M), GPT-2 (774M), and GPT-2 (1.5B)
- Input token size: varies from 32 to 128
- **Output token size:** varies from 1 to 256

• DFX achieves an average of 3.20×, 4.46×, and 5.58× speedup over GPU counterparts

DFX Evaluation Results

 DFX achieves an average of 3.78× throughput and 3.99× energy efficiency on four-device appliances

- Performance of DFX increases linearly with the number of FPGAs at the rate of
 - 1.5

Appliance Cost Analysis

• DFX is 8.21 × more cost-effective than the GPU appliance

	GPU Appliance	DFX Appliance
Accelerators		
	4 × Nvidia Tesla V100 32GB HBM	4 × Xilinx Alveo U280 8GB HBM
Performance (Input:Output = 64:64)	13.01 tokens/sec	72.68 tokens/sec
Cost	\$45,832* (1 GPU = \$11,458)	\$31,180* (1 FPGA = \$7,795)
Performance / Cost	283.86 tokens/sec/million\$	2330.98 tokens/sec/million\$

*: The price is as of April, 2022 It may vary depending on market conditions

Newest U55C is only 4,395\$ with 16GB HBM

Summary

- DFX is a multi-FPGA appliance for accelerating transformer-based text generation, featuring
 - Intra-layer model parallelism
 - Compute core supporting GPT end-to-end operations
 - Lightweight router
- DFX achieves 5.58× and 3.99× improvements in performance and energy-efficiency compared to the GPU appliance's
- DFX is 8.21× more cost-effective than the GPU appliance

Thank You

- What's next?
 - We are **extending the model to one of GPT-3's** for a POC deployment in a datacenter

- Any questions? Feel free to contact us!
 - Email: <u>seongminhong@kaist.ac.kr</u> or jooyoung1203@kaist.ac.kr
 - Website: https://castlab.kaist.ac.kr/
 - LinkedIn: <u>https://www.linkedin.com/company/kaistcastlab/</u>

