
From High-Level 
Frameworks to 
custom Silicon 

with SODA
Serena Curzel, Nicolas Bohm Agostini,

Reece Neff, Ankur Limaye,
Jeff (Jun) Zhang, Vinay Amatya,

Marco Minutoli, Vito Giovanni Castellana,
Joseph Manzano, David Brooks,
Gu-Yeon Wei, Fabrizio Ferrandi,

Antonino Tumeo



2

Overview

• The SODA Synthesizer is a modular, multi-level, 
interoperable, extensible, open-source 
hardware compiler from high-level 
programming frameworks to silicon
 Compiler-based frontend, leveraging the MultiLevel

Intermediate Representation (MLIR)
 Compiler-based backend, leveraging state-of-the-art 

High-Level Synthesis (HLS) techniques

• Generates synthesizable Verilog for a variety 
of targets, from Field Programmable Gate Arrays 
(FPGAs) to Application Specific Integrated 
Circuits (ASICs)

• Optimizations at all levels are performed as 
compiler optimization passes



3

Results Useful links

ASIC accelerators for LeNet layers

SODA-OPT

SODA Docker Image

Panda-Bambu HLS (v 0.9.7)

SODA Tutorial: DATE 2022



4

Motivations
• Data Science algorithms, Machine Learning models and frameworks are quickly evolving

• Increased complexity and tight performance/power/area constraints (especially on edge 
devices) require domain-specific accelerators

[Y. Lecun, et al., “Gradient-based learning applied to document recognition,” Proc. IEEE, 1998}

Increasing number of 
layers and parameters

New network 
architectures

Compression 
techniques

New programming 
environments

(ResNet VGG, Transformers…) (GNN, LSTM, Reinforcement Learning…) (Quantization, pruning…) (TensorFlow, PyTorch, MXNet…)



5

Motivations

• Existing accelerators start from specific 
models (e.g., CNNs) or only try to accelerate 
specific computational patterns
 Designing hardware accelerators by hand is 

complex and time-consuming
 Hardware designers may want to explore different 

design trade-offs, depending on the application 
requirements

• Agile Hardware Design and Prototyping is 
required
 Quickly transition from algorithm formulation to 

accelerator implementation
 Sufficient design space exploration knobs
 Minimal human interaction

LeNet architecture

ASIC



6

Our solution: the SODA Synthesizer

• The SODA Synthesizer is a modular, multi-level, 
interoperable, extensible, open-source hardware 
compiler from high-level programming frameworks 
to silicon
 Compiler-based frontend, leveraging the MultiLevel

Intermediate Representation (MLIR)
 Compiler-based backend, leveraging state-of-the-art High-

Level Synthesis (HLS) techniques

• Generates synthesizable Verilog for a variety of 
targets, from Field Programmable Gate Arrays (FPGAs) 
to Application Specific Integrated Circuits (ASICs)

• Optimizations at all levels are performed as compiler 
optimization passes

[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya, 
J. B. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G. Wei, D. 
Brooks: Towards Automatic and Agile AI/ML Accelerator Design with 
End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J.Zhang, A. Limaye, C. Tan, V. Amatya, 
M. Minutoli, V. G. Castellana, J. B. Manzano , D. Brooks, G. Wei, A. 
Tumeo: Bridging Python to Silicon: The SODA Toolchain. To appear in 
IEEE Micro Magazine]



7

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend 
optimizer

• Employs and embraces the MLIR framework
 MLIR: Multi-Level Intermediate Representation
 Used in TensorFlow, TFRT, ONNX-MLIR, others

• Uses MLIR and compiler passes to:
 Identify code regions for hardware generation
 Perform high-level optimizations (dataflow 

transformations, data-level and instruction-level 
parallelism extraction)

 Generate interfacing code and runtime calls for 
microcontroller [N. Bohm Agostini, S. Curzel, V.C. Amatya, C. 

Tan, M. Minutoli, V. G. Castellana, J. Manzano, 
D. Kaeli, A. Tumeo, An MLIR-based Compiler 
Flow for System-Level Design and Hardware 
Acceleration. To appear at ICCAD 2022]

Frontend: SODA-OPT



8

• SODA-OPT implements optimizations as compiler passes

Single basic block containing the compute 
intensive part of the kernel

More freedom to schedule operations

Increased instruction-level parallelism
Schedule independent arithmetic operations on the 

same cycle when their inputs are available

Increased data-level parallelism
Schedule operations into different memory units on 

the same cycle

Avoid unnecessary reads from kernel arguments
Reduce expensive accesses to external memory

Reuse read results, aggregate on scalars
Save scalar values loaded from memory and 
intermediate results in registers rather than 

performing repeated memory accesses

Early alias analysis
Schedule memory operations independently on 

regions that don’t alias

Remove redundant or unnecessary operations
Avoid wasting resources

Tiling

Unrolling

Temporary Buffer 
Allocation

Alloca Buffer 
Promotion

Scalar Replacement 
of Aggregates

Early Alias Analysis

Outlining

Common 
Sub-expression 

Elimination

Dead Code 
Elimination

Structural

Memory

Avoid Redundancy 
and Promote Reuse

Avoid Unnecessary 
Operations

Frontend: SODA-OPT



9

Backend: High-Level Synthesis

• The synthesizer backend takes as input the 
optimized low-level IR and generates the hardware 
descriptions of the accelerators 

• The main HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis 
(HLS) tool
We are key contributors to Bambu, with parallel 

accelerator designs, modular HLS, and ASIC support
Automated testing and verification

[F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. 
Fiorito, M. Lattuada, M. Minutoli, C. Pilato, A. Tumeo: 
Invited: Bambu: an Open-Source Research Framework for 
the High-Level Synthesis of Complex Applications. DAC 
2021: 1327-1330]



10

Backend: High-Level Synthesis

• We also support integration with Xilinx Vitis HLS 
through its open-source LLVM frontend

• The SODA Synthesizer has interfaces with multiple 
open-source and commercial backends
Xilinx Vivado, Intel Quartus (FPGA)
OpenROAD, Synopsys Design Compiler (ASIC)

• Automated path to FPGA bitstream or GDS2 files

Backend: HLS

IR downgrading

To: FPGA Design

Vitis LLVM frontend

[https://github.com/Xilinx/HLS]

From: Frontend



11

Examples of generated accelerators

• LeNet model imported from TensorFlow
• Each operator is synthesized to an ASIC 

accelerator (OpenROAD FreePDK 45nm)
• SODA-OPT optimized accelerators are bigger, 

but also much faster



12

Examples of generated accelerators

• PolyBench kernels
• Outperforming 

state-of-the-art HLS 
tools and frontends

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-based Compiler Flow for System-Level Design and Hardware Acceleration. To appear at 
ICCAD 2022]



13

Conclusions

• The SODA toolchain provides an end-to-end compiler-based design flow from the 
formulation of an algorithm to the deployment of custom hardware accelerators
• Multi-level, modular, and extensible
• Promotes agile hardware design
• Based on open-source technologies, and integrated with proprietary tools

• Start using SODA today with these links:

SODA-OPT SODA Docker ImagePanda-Bambu HLS (v 0.9.7) SODA Tutorial: DATE 2022


	From High-Level Frameworks to custom Silicon with SODA
	Overview
	Results
	Motivations
	Motivations
	Our solution: the SODA Synthesizer
	Slide Number 7
	Slide Number 8
	Backend: High-Level Synthesis
	Backend: High-Level Synthesis
	Examples of generated accelerators
	Examples of generated accelerators
	Conclusions

