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A 0.7-pJ/bit, 8.5-Gbps/link inductive coupling inter-chip wireless
communication interface for a 3D-stacked SRAM has been
developed in a 7-nm FinFET process. A new physical placement
method that allows coils to be placed over off-the-shelf SRAM
macros with small magnetic field attenuation, together with the
use of synchronous communication using Manchester encoding
and a clocked comparator to enable the detection of small-swing
signals, achieve a 26% reduction in SRAM die area compared to
TSV-based stacking. Inter-chip communication at 0.7-pJ/bit, 8.5-
Gbps/link was confirmed using test chips. A 4-hi 3D-stacked SRAM
module using the proposed interface is estimated to achieve a 1.2-
TB/s/mm2 area efficiency, representing a two-orders-of-magnitude
improvement over state-of-the-art 3D-stacked SRAM.

Abstract
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• Mobile AI devices need high-bandwidth, low-latency memory with small form 
factor

• 3D-stacked SRAM (3D-SRAM) can meet these demands

• But current 3D-SRAM using TSV and m-bump has issues with cost, yield and 
area efficiency [1][2]

Introduction

SRAM

Logic

3D-stacked SRAM with TSV and m-bump [1][2]
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• To eliminate TSV and m-bump, ThruChip Interface (TCI) is proposed, which is 
a wireless version of TSV

• TCI is compatible with standard CMOS process, leading to low cost and high 
yield

Inductive Coupling Technology (TCI)
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• A 40-nm 96-MB 3D-stacked SRAM using inductive coupling was proposed

• But limited bandwidth due to large coils is an issue

Conventional 3D-SRAM Using TCI
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[5] K. Shiba, et al., TCAS-I, 2020
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• This work proposes 3D-stacked SRAM using inductive coupling with minimized area 
overhead, reducing SRAM die area by 26% vs TSV

(A) Over-SRAM coils: enable high area efficiency while limiting magnetic field attenuation to 30%

(B) Manchester-encoded synchronous transceiver: detects small received signal with low power

Proposed 3D-SRAM Using TCI

(c) Scaling trend of SOTA SRAM
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• Proposed physical layout method of coils over off-the-shelf SRAM macros suppresses 
magnetic field attenuation due to eddy currents on SRAM macros

(A) Over-SRAM Coil

Ref. [6]: K. Shiba, IEEE TCAS-I, 2021.
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• (a) Clocked comparator and (b) Manchester encoding achieve detection of small pulse signal with low 
transmission power

(a) detects low-swing pulse by utilizing clock-triggered positive feedback, leading to low transmission power

(b) generates pulse signal in every cycle for clock-triggered data reception

(B) Manchester-encoded Synchronous TRx
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• Test chip was fabricated in a 7-nm FinFET process

Test Chip
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• Inter-chip wireless communication at 0.7 pJ/bit, 8.5 Gbps/link measured for a 2-hi 3D-SRAM

• A 4-hi 3D-SRAM estimated to achieve 1.2 TB/s/mm2, a two-orders-of-magnitude 
improvement over TSV-based 3D-SRAM [1]

Measurement Results
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Performance Comparisons

MICRO’17 [8] ISSCC’20 [9] Hot Chips’20 [1]
Hot Chips’20 [1]
(Extrapolated to 4 Hi)

This work

Technology 20-nm DRAM 1y-nm DRAM 7-nm FinFET 7-nm FinFET 7-nm FinFET

Memory type HBM2 DRAM HBM2E DRAM SRAM SRAM SRAM

Data bus Bi-directional Bi-directional Uni-directional Uni-directional Uni-directional

Stack # 8 12 1 4 4

Bandwidth 256 GB/s 640 GB/s 24.3 GB/s 24.3 GB/s 4.3 GB/s

m-bump pitch 48 / 55 mm 48 / 55 mm 40 mm 40 mm -

IO area overhead (*1) 2.8 mm2 2.8 mm2 0.92 mm2 0.92 mm2 0.0037 mm2

Bandwidth per IO area 

overhead
92 GB/s/mm2 231 GB/s/mm2 26 GB/s/mm2 26 GB/s/mm2 1162 GB/s/mm2

Data-rate 2.0 Gb/s 5.0 Gb/s 0.76 Gb/s 0.76 Gb/s 8.5 Gb/s

I/O energy consumption ~ 2 pJ/bit N/A (~2.5 pJ/bit(*2)) 0.1 pJ/bit 0.4 pJ/bit (*3) 0.7 pJ/bit

Interface type TSV + m-bump TSV + m-bump TSV + m-bump TSV + m-bump TCI

Chip size 12mm × 8mm 11mm × 10mm 9.0mm × 9.0mm - 2.0mm × 2.0mm

*1: IO area only for signal excluding power

*2: Estimated from ratio of the squared voltage and stack # of HBM2 (1.2 V, 8 Hi, [8]) and HBM2E (1.1 V, 12 Hi, [9])

*3: Capacitance load of 4×# of Rx’s, m-bumps and TSVs driven by Tx compared with 1 Hi

[8] M. O’Connor, MICRO, 2017  [9] C.-S. Oh, et al., ISSCC, 2020
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• A 3D-stacked SRAM using inductive coupling is proposed with two new 
methods to minimize area overhead.
• (A) Over-SRAM coils: enable high area efficiency while limiting magnetic field 

attenuation to 30%.

• (B) Manchester-encoded synchronous transceiver: detects small received signal with 
low power.

• Test chip was fabricated in a 7-nm FinFET process.
• Inter-chip wireless communication at 0.7 pJ/bit, 8.5 Gbps/link was measured for a 2-hi 

3D-SRAM

• A 4-hi 3D-SRAM achieves 1.2 TB/s/mm2, a two-orders-of-magnitude improvement over 
conventional TSV-based 3D-SRAM.

Conclusion
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