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In this study, we propose a 13.7uJ/prediction 88% accuracy CIFAR-10
single-chip wired-logic processor in 16-nm FPGA by utilizing a newly
developed 98%-pruned ultra-sparse, binary-weight nonlinear neural
network (NNN) and a shift-register based pipelined wired-logic
architecture. Compared with the state-of-the-art FPGA-based
processor, 2,036 times better energy efficiency is achieved.
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Introduction S
« Pace of Energy Efficiency Improvement Slowing
— Processor Element (PE) Bit Width Already Reduced to 1b
— Processors Using Only On-chip SRAM Already Realized
= Power-Hungry SRAM Access also should be eliminated
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Wired-logic Architecture
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« Goal: Energy-efficient Al Processor by eliminating the memory access.
— Ex. Implementing 88% Acc. CIFAR-10 SNN requires 3,080mm? in 28nm,

resulting in 8 TrueNorth chips [4].

— It requires power-hungry chip-to-chip I/F, resulting in poor energy efficiency.
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Our Research Goal

» Goal: Single Chip Al Processor with 2,036x Higher Energy Efficiency Using
— (A) ~98% pruned ultra-sparse, binary-weight nonlinear neural network (NNN).
— (B) Shift-reg. based wired-logic architecture saves chip area by a factor of 14.
— (C) Agile (5 min.) synthesis from Python.
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PHE Nonlinear Neural Network (NNN) S

Deep Neural Network (DNN)
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Nonlinear Neural Network (NNN)

Individually optimized
non-linear functions
improve accuracy

L.

0 ‘e
. .
. .
. .
. .
.
. ‘e
. .
. .
. .
. .
. .
. .
. .
. .
. ‘e
3

> X

ES ~ FPGA-LUTs per PE
~ 128 LUTs (1)

> X

Adders and LUT only

FPGA-LUTs per PE

32 LUTs (1/4)




—
cg REK S

Back Propagation Based Training
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« An CNN is given as an initial structure to limit search space
« Both synapse pruning and activation function optimization are updated by back

propagation
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« ~98% pruning is achieved while maintaining high accuracy
« Hardware resource utilization is reduced by a factor of 468

Comparison with Other Neural Networks
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Conv. Binarized Pruned Proposed
CNN CNN BNN NNN
Data set CIFAR-10
# of CNN layers 8 convolution , 2 dense, 4 pooling layers
Weight bit width INT8b Binary
Pruning rate 0% 50% 97.8% 97.8%
Activation function RelLU RelLU RelLU fL\llszlt?cl:;s
Accuracy 84 % 85% 67% 88%
# of FPGA-LUTs 7'O(>1<)1 0° 6.3X108 1.5X107 1(.15/21<6180)7
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« Conventional wired-logic processor processes all data at the same time, resulting
in large circuit size

 In pipelined wired-logic processor, only a portion of the data are processed at the

same time Sensor Line buffer Line buffer

DD_. DD_’ Filter operation in
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Hardware Resource Reduction 2l

* Pipelined wired-logic reduces hardware usage by 12x
* 14-layer NNN can be implemented with single FPGA

95 IBM TrueNorth 28nm
o0 | # of FPGA-LUT is reduced by 12x By A3
o | Proposed 0.’00 ¢ CNN 15 layer

Conventional 2K ISE  Acc. 86%
Sl 0~/ 7
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Agile Implementation
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 Verilog code for NNN pipelined wired-logic processor can be generated by Python

code agiely

DNN Python code

Python to C++

Compilation

Data flow graph
design

Manual operation
>24hr

—

Allocation

Scheduling

v

Verilog code

Conventional accelerator design flow

From 24 hours
to 5 min.

NNN Python code

Automatic bit-width assign

Translating Python to Verilog

_ Fully automated
~ 5 min.
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Verilog code

Proposed wired-logic processor design flow
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Implementation Results

* 3 models, with different size, are implemented
* None of them uses memory

’ Chip Size Small Medium Large
]um model on Pruning rate [%] 99.55 99.11 97.78
Accuracy [%] 76 82 88
LUTs 396,341 667,353 1,250,075
FFs 69,697 96,838 106,723
BRAMs 0 0 0
DSPs 0 0 0
Throughput [Mfps] 0.94 0.94 1.03
Clock [MHZ] 30 30 33
Static power [W] 2.5 2.7 8.1
Dynamic power [W] 1.7 5.2 6.1
Energy efficienc
[Ej’/frame] y 4.0 7.6 13.7
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Comparison with Previous Works
« Energy efficiency is improved by 2036x compared with SOTA 28nm FPGA work|[2]
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BB Conclusion

« A pipelined wired-logic Al processor using NNN is proposed
— NNN can achieve high accuracy even with binarized weight and aggressive pruning
— By using NNN, hardware resource usage can be reduced by 468x
— By using pipelined wired-logic, hardware resource usage can be reduced by 12x
— Verilog code can be generated by Python code agiley

« This architecture is implemented with Xilinx xcvu9p
— 2036x energy efficiency improvement compared with SOTA FPGA implementation




