

A 13.7µJ/prediction 88% Accuracy CIFAR-10 Single-Chip Wired-logic Processor in 16-nm FPGA using Non-Linear Neural Network

Yao-Chung Hsu, Atsutake Kosuge, Rei Sumikawa, Kota Shiba, Mototsugu Hamada, Tadahiro Kuroda

The University of Tokyo

Abstract

In this study, we propose a 13.7µJ/prediction 88% accuracy CIFAR-10 single-chip wired-logic processor in 16-nm FPGA by utilizing a newly developed 98%-pruned ultra-sparse, binary-weight nonlinear neural network (NNN) and a shift-register based pipelined wired-logic architecture. Compared with the state-of-the-art FPGA-based processor, 2,036 times better energy efficiency is achieved.

Introduction

- Pace of Energy Efficiency Improvement Slowing
 - Processor Element (PE) Bit Width Already Reduced to 1b
 - Processors Using Only On-chip SRAM Already Realized
 - \Rightarrow Power-Hungry SRAM Access also should be eliminated

Conventional von-Neumann AI Processor

Energy Efficiency Trend in ISSCC

Input data

Wired-logic Architecture

- Goal: Energy-efficient AI Processor by eliminating the memory access.
 - Ex. Implementing 88% Acc. CIFAR-10 SNN requires 3,080mm² in 28nm, resulting in 8 TrueNorth chips [4].
 - It requires power-hungry chip-to-chip I/F, resulting in poor energy efficiency.

Our Research Goal

- Goal: Single Chip AI Processor with 2,036x Higher Energy Efficiency Using
 - (A) ~98% pruned ultra-sparse, binary-weight nonlinear neural network (NNN).
 - (B) Shift-reg. based wired-logic architecture saves chip area by a factor of 14.
 - (C) Agile (5 min.) synthesis from Python.

Back Propagation Based Training

- An CNN is given as an initial structure to limit search space
- Both synapse pruning and activation function optimization are updated by back propagation

Comparison with Other Neural Networks

- ~ 98% pruning is achieved while maintaining high accuracy
- Hardware resource utilization is reduced by a factor of 468

	Conv. CNN	Binarized CNN	Pruned BNN	Proposed NNN
Data set	CIFAR-10			
# of CNN layers	8 convolution , 2 dense, 4 pooling layers			
Weight bit width	INT8b	Binary		
Pruning rate	0%	50%	97.8%	97.8 %
Activation function	ReLU	ReLU	ReLU	Various functions
Accuracy	84 %	85%	67 %	<mark>88</mark> %
# of FPGA-LUTs	7.0×10 ⁹ (1)	6.3×10 ⁸	1.5×10 ⁷	1.5×10 ⁷ (1/468)

Pipelined Wired-Logic

- Conventional wired-logic processor processes all data at the same time, resulting in large circuit size
- In pipelined wired-logic processor, only a portion of the data are processed at the same time

Conv. wired-logic processor

Proposed 3line buffer-based wired-logic processor Filter operation in NNN processing

NNN filter

Hardware Resource Reduction

- Pipelined wired-logic reduces hardware usage by 12x
- 14-layer NNN can be implemented with single FPGA

Agile Implementation

• Verilog code for NNN pipelined wired-logic processor can be generated by Python code agiely

Conventional accelerator design flow

Proposed wired-logic processor design flow

Implementation Results

- 3 models, with different size, are implemented
- None of them uses memory

Chip Size	Small	Medium	Large
Pruning rate [%]	99.55	99.11	97.78
Accuracy [%]	76	82	88
LUTs	396,341	667,353	1,250,075
FFs	69,697	96,838	106,723
BRAMs	0	0	0
DSPs	0	0	0
Throughput [Mfps]	0.94	0.94	1.03
Clock [MHz]	30	30	33
Static power [W]	2.5	2.7	8.1
Dynamic power [W]	1.7	5.2	6.1
Energy efficiency [µJ/frame]	4.0	7.6	13.7

Comparison with Previous Works

• Energy efficiency is improved by 2036x compared with SOTA 28nm FPGA work[2]

10 classes and examples of CIFAR-10

[1] L. Lai, et al., arXiv 1801.06601, pp. 1-10, Jan. 2018. [2] R. Zhao, et al., Int' Symp. on FPGA, pp. 15-24, Feb. 2017.
[3] Y. Umuroglu, et al., Int' Symp. on FPGA, pp. 65-74, Feb. 2017.
[4] Steven K. Esser et al., "Convolutional networks for fast, energy-efficient neuromorphic computing," in PNAS, vol. 113, no. 41, Oct. 2016.

[5] D. Bankman, *et al.*, *ISSCC*, pp. 222-224, Feb. 2018
[6] B. Moons, *et al.*, *CICC*, pp. 1-4, Apr. 2018.
[7]: A. Kosuge et al., IEEE OJCAS, vol. 3, pp. 4-14, Jan. 2022.

(12/13)

Conclusion

- A pipelined wired-logic AI processor using NNN is proposed
 - NNN can achieve high accuracy even with binarized weight and aggressive pruning
 - By using NNN, hardware resource usage can be reduced by 468x
 - By using pipelined wired-logic, hardware resource usage can be reduced by 12x
 - Verilog code can be generated by Python code agiley
- This architecture is implemented with Xilinx xcvu9p
 - 2036x energy efficiency improvement compared with SOTA FPGA implementation