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Abstract

• In this study, we propose a 13.7mJ/prediction 88% accuracy CIFAR-10

single-chip wired-logic processor in 16-nm FPGA by utilizing a newly

developed 98%-pruned ultra-sparse, binary-weight nonlinear neural

network (NNN) and a shift-register based pipelined wired-logic

architecture. Compared with the state-of-the-art FPGA-based

processor, 2,036 times better energy efficiency is achieved.
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Introduction

• Pace of Energy Efficiency Improvement Slowing
– Processor Element (PE) Bit Width Already Reduced to 1b
– Processors Using Only On-chip SRAM Already Realized 
 Power-Hungry SRAM Access also should be eliminated
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Wired-logic Architecture

• Goal: Energy-efficient AI Processor by eliminating the memory access.
– Ex. Implementing 88% Acc. CIFAR-10 SNN requires 3,080mm2 in 28nm, 

resulting in 8 TrueNorth chips [4]. 

– It requires power-hungry chip-to-chip I/F, resulting in poor energy efficiency.
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Our Research Goal

• Goal: Single Chip AI Processor with 2,036x Higher Energy Efficiency Using

– (A) ~98% pruned ultra-sparse, binary-weight nonlinear neural network (NNN).

– (B) Shift-reg. based wired-logic architecture saves chip area by a factor of 14.

– (C) Agile (5 min.) synthesis from Python.
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Energy Consumption Comparison
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Nonlinear Neural Network (NNN)
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Nonlinear Neural Network (NNN)
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Back Propagation Based Training

• An CNN is given as an initial structure to limit search space

• Both synapse pruning and activation function optimization are updated by back 

propagation
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Comparison with Other Neural Networks

• ～98% pruning is achieved while maintaining high accuracy

• Hardware resource utilization is reduced by a factor of 468
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Data set CIFAR-10

# of CNN layers 8 convolution , 2 dense, 4 pooling layers

Weight bit width INT8b Binary

Pruning rate 0% 50% 97.8% 97.8%

Activation function ReLU ReLU ReLU
Various

functions

Accuracy 84 % 85% 67% 88%
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Pipelined Wired-Logic

• Conventional wired-logic processor processes all data at the same time, resulting 

in large circuit size

• In pipelined wired-logic processor, only a portion of the data are processed at the 

same time
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Hardware Resource Reduction

• Pipelined wired-logic reduces hardware usage by 12x

• 14-layer NNN can be implemented with single FPGA
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Agile Implementation

• Verilog code for NNN pipelined wired-logic processor can be generated by Python 

code agiely
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Implementation Results

• 3 models, with different size, are implemented

• None of them uses memory
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Chip Size Small Medium Large

Pruning rate [%] 99.55 99.11 97.78

Accuracy [%] 76 82 88

LUTs 396,341 667,353 1,250,075

FFs 69,697 96,838 106,723

BRAMs 0 0 0

DSPs 0 0 0

Throughput [Mfps] 0.94 0.94 1.03

Clock [MHz] 30 30 33

Static power [W] 2.5 2.7 8.1

Dynamic power [W] 1.7 5.2 6.1

Energy efficiency

[mJ/frame]
4.0 7.6 13.7



Comparison with Previous Works

• Energy efficiency is improved by 2036x compared with SOTA 28nm FPGA work[2]
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Conclusion

• A pipelined wired-logic AI processor using NNN is proposed
– NNN can achieve high accuracy even with binarized weight and aggressive pruning

– By using NNN, hardware resource usage can be reduced by 468x

– By using pipelined wired-logic, hardware resource usage can be reduced by 12x

– Verilog code can be generated by Python code agiley

• This architecture is implemented with Xilinx xcvu9p
– 2036x energy efficiency improvement compared with SOTA FPGA implementation
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