
Accelerating Graphic Rendering on

Programmable RISC-V GPUs

Blaise Tine, Varun Saxena, Santosh Srivatsan, Joshua R. Simpson, Fadi
Alzammar, Liam Paul Cooper, Sam Jijina, Swetha Rajagoplan, Tejaswini
Anand Kumar, Jeff Young, Hyesoon Kim

Abstract

2

| Graphics rendering remains one of the most compute-intensive and memory-bound applications

of GPUs and has been driving their push for performance and energy efficiency since its

inception. Early GPU architectures focused only on accelerating graphics rendering and

implemented dedicated a fixed-function rendering units. Today’s GPUs have become more

programmable to address the complexity and diversity of modern graphics workloads while still

accelerating several components of the graphics pipeline in fixed-function hardware.

| Generalizing the GPU microarchitecture and implement some of its graphics hardware blocks in

software can save area that can be used to expand the generic pipeline, especially in mobile

systems-on-chips environments where power and area is scarce.

| In this work, we propose a RISC-V-based hybrid GPU architecture that accelerates the graphics

pipeline without paying the cost of a full hardware graphics pipeline. We evaluated the design on

an Altera Arria 10 FPGA running at 200 MHz.

Motivations

3

| GPU Acceleration for edge computing
• GPU has many applications

• e.g. Graphics, ML, Crypto, graphs, etc.
• General pipeline optimization improve all applications
• Specialized components improve single applications
• Fixed-function area is mainly for graphics
• Can we trade graphics area for more cores?

GPU

Research

RISC-V
ISA

LLVM
Compiler

FPGA

OpenCL

Vulkan

Motivations (2)

4

| Research in GPU Hardware Architecture
• Graphics hardware research beyond simulation
• Full stack open-source framework
• RISC-V ISA extension for graphics
• Open-source Vulkan software stack

GPU

Research

RISC-V
ISA

LLVM
Compiler

FPGA

OpenCL

Vulkan

GPU Framework Overview

55

| Graphics Applications
| 3D & 2D content

| Vulkan Runtime
| Graphics APIs

| Vortex Vulkan Render
| Shader compiler
| Kernel scheduling

| GPU Processor
| Rasterizer
| Render Output
| Core cluster

3D Graphics Pipeline Stages

66

| Back-end (GPU)
• Vertex shading
• Primitive assembly
• Clipping
• Culling

| Front-end (GPU)
• Triangle setup
• Rasterization
• Interpolation
• Early-Z
• Pixel shading
• Depth/Stencil
• Blending

Hybrid 3D graphics Pipeline Stages

77

| Back-end (CPU)
• Vertex shading
• Primitive assembly
• Clipping
• Culling
• Triangle setup

| Front-end (GPU)
• Rasterization
• Interpolation
• Early-Z
• Pixel shading
• Depth/Stencil
• Blending

Graphics Hardware Microarchitecture

88

| Command Processor
| CPU-GPU communication

| DCRs
| Configuration registers
| CPU driven

| Raster Unit
| Triangle rasterizer
| Tile-based

| ROP Unit
| Depth/Stencil
| Blending
| Logic Op

| Texture Unit
| Texture sampling

Rasterizer Unit

99

| Raster Slices
• Tile Evaluators
• Block Evaluators
• Quad Evaluators

| Memory Unit
| Configuration Registers
| Raster Cache

Render Output Unit

1010

| Rop Slices
• Depth Stencil
• Blending
• Logic Op
• Memory Unit

| Configuration Registers
| ROP Cache

Vulkan Software Render

1111

| Vulkan Runtime Render
• Vulkan runtime API
• JIT compilation on host CPU
• Shader to RISC-V compilation
• Graphics extension Calls
• Kernel scheduling

Evaluation

12

| FPGA Setup
| Intel Arria 10 FPGA
| Up to 8 cores (128 threads)
| Caches: 16KB I$, 16KB D$
| Shared memory: 16 KB
| Memory bandwidth: 16 GB/s
| Fmax 200 MHz

Evaluated 3D Demos

Evaluation

13

| Performance
| Texture FillRate: 3.2 GT/s
| Pixel FillRate: 1.6 GT/s
| Avg frame rate: ~10 fps
| Scaling across apps

Evaluation

14

| Relative area cost in single-core configuration
| Texture Unit: 13%
| Raster Unit: 11%
| Rop Unit: 8%

LUTs BRAMs DSPs

References

15

Thank you! Evaluated 3D Demos

| Website: https://vortex.cc.gatech.edu

| Github: https://github.com/vortexgpgpu/vortex

Thank you!

https://vortex.cc.gatech.edu/
https://github.com/vortexgpgpu/vortex

