
MLIR Fundamentals
Hot Chips 34, 2022

Jacques Pienaar
Google

1

Outline

● Brief MLIR introduction
● MLIR philosophy
● What you get in the box
● Questions

2

A collection of modular and reusable software
components that enables the progressive

lowering of high level operations, to efficiently
target hardware in a common way

3

Multi-Level Intermediate Representation

 New compiler
infrastructure

Originally built by team
in TensorFlow

ecosystem

Under neutral
governance as part

of LLVM project
4

Origin: Many graph compilers

Not ideal (old) state

~3

2

2+

2+

2+

1

5

Many broken user journeys

LLVM IR has proved itself as a
versatile “mid-level” representation
similar to C with vectors and SSA

LLVM IR

LLVM: Industry Standard for Compiler Infrastructures

6

LLVM IR has proved itself as a
versatile “mid-level” representation
similar to C with vectors and SSA

LLVM IR Machine IRGlobalISel MC IR

LLVM IR is not enough for low-level
representations

Multiple lower levels of abstraction
introduced over time

LLVM: Industry Standard for Compiler Infrastructures

7

LLVM IR is not enough for high-level
representations

There is a huge abstraction gap
between ASTs and LLVM IR, covered
in a one-shot conversion in Clang.

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC,

CUDA,
OpenCL, ...

LLVM: Industry Standard for Compiler Infrastructures

8

Clang has a representation parallel to
AST used in, e.g., static analyzer,
various advanced diagnostics.

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC,

CUDA,
OpenCL, ...

clang CFG

LLVM: Industry Standard for Compiler Infrastructures

9

Some tools (e.g. Polly) resort to
raising from LLVM IR to represent
higher-level constructs such as
loops.

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC,

CUDA,
OpenCL, ...

ScopInfo

LLVM: Industry Standard for Compiler Infrastructures

10

Newer languages/compilers define
custom intermediate representations
between AST and LLVM IR for
language-specific analyses and
transformations

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC,

CUDA,
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

LLVM: Industry Standard for Compiler Infrastructures

11

LLVM IR Machine IRGlobalISel MC IR

As we saw modern ML frameworks
include domain specific compiler
infrastructures albeit
domain-specific

clang AST
C, C++, ObjC,

CUDA,
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API,
Keras

It’s not even only source languages!

12

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC,

CUDA,
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API,
Keras

● Type system support.
● CSE, DCE and other

“canonicalizations”.
● Location tracking and

diagnostics.
● Pass management.
● Regions, basic blocks,

statements.
● Conversions and validations.
● Tooling for tests, benchmarks,

etc.

How much code in common but reimplemented?

13

Great!
● High-level domain-specific optimizations
● Progressive lowering encourages reuse between levels
● Great location tracking enables flow-sensitive “type checking”

Domain specific intermediate representation

Not great!
● Huge expense to build this infrastructure
● Reimplementation of all the same stuff:

○ pass managers, location tracking, use-def chains, inlining, constant folding, CSE, testing tools, ….

● Innovations in one community don’t benefit the others

14

A toolkit for representing and transforming “code”

Represent and transform IR ↺⇄⇓

Represent Multiple Levels of

● tree-based IRs (ASTs),
● graph-based IRs (TF Graph, HLO),
● machine instructions (LLVM IR)

IR at the same time

While enabling

Common compiler infrastructure

● location tracking
● richer type system
● common set of passes

(analysis/optimization)

And much more

15

↺⇄⇓

Missing direction? Sort of

● Almost always easier to preserve than recover info
● Lifting is fragile
● User-intent impossible to recover

Principle: Don't destroy information/structure you'll need to recover later

16

Example: TensorFlow Control Flow v1

17 of 70

 x = constant_op.constant(10.0, name='x')

 pred = math_ops.less(1, 2)

 fn1 = lambda: math_ops.exp(x, name='fn1')

 fn2 = lambda: constant_op.constant(20.0)

 r = control_flow_ops.cond(pred, fn1, fn2)

 r = r * x

 _ = gradients.gradients(r, [x])[0]

User writes:

 %c0 = mhlo.constant dense<1> : tensor<i64>
 %c1 = mhlo.constant dense<2> : tensor<i64>
 %0 = mhlo.while(%arg1 = %arg0) :
 (tensor<*xf32>) -> tensor<*xf32>
 cond {

 %1 = "mhlo.compare"(%c0, %c1)
 {comparison_direction = "LT"} :
 (tensor<i64>, tensor<i64>) -> tensor<i1>
 "mhlo.return"(%1) : (tensor<i1>) -> ()
 } do {
 // ...
 "mhlo.return"(%4) : (tensor<*f32>) -> ()
 }

XLA wants (using MLIR MHLO dialect):

Dataflow computing

Mix and match in a single IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
 {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA (MHLO)

LLVM IR

%m = “mhlo.AllToAll"(%z)
 {split_dimension: 1, concat_dimension: 0, split_count: 2}
 : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b
 : f32

Lo
w

er
in

g

I very rarely work with
only 1 dialect (even at
given time)

18

Mix and match in a single IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
 {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “mhlo.AllToAll"(%z)
 {split_dimension: 1, concat_dimension: 0, split_count: 2}
 : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b
 : f32

Lo
w

er
in

g

In software In hardware

● IP blocks

● Generator libraries

19

vs

Don't create artificial boundaries

MLIR enables building domain specific
IRs and representing problem domains

Force all into one

Without reinventing the wheel

Without forcing abstracting over
and dropping semantics until
desired

Different mechanisms for
abstracting (ops, interfaces, types)

20

Core design principles

1. Parsimony

2. Traceability

3. Progressivity

See "MLIR: Scaling Compiler Infrastructure for Domain Specific Computation", CGO,
March 1, 2021 for further expansion

21

Design principles

Parsimony Traceability Progressivity

“Entities should not be multiplied
without necessity.” In compilers,
some things are intrinsically
complex, avoid making easy
things incidentally complex. A
small set of versatile built-in
concepts enables wide
extensibility of the system.

It is almost always easier to
preserve information than to
recover it. Keep the compiler
accountable by making its
operation transparent and
analyzable. Declarative
specification helps unless it
becomes more complex than
algorithms.

In compilers, premature lowering
is the predecessor of all evil.
Preserve high-level abstractions
as long as necessary, lower them
consciously. Embrace diverging
flows and extensibility.
Intermediate state is important
in an IR.

22

Design requirements

Parsimony Traceability Progressivity

- Everything extensible
- SSA + graphs + regions

- Pervasive source location
- Declarative definitions

- Support high-level
abstractions

- Progressive lowering

23

How is MLIR different?

From graph
representation

through optimization
to code generation

State of Art Compiler
Technology

MLIR is NOT just a
common graph

serialization format
nor is there anything

like it

Modular & Extensible Not opinionated

Choose the level of
representation that is
right for your device

24

MLIR : Reusable Compiler Abstraction Toolbox

No forced IR impedance
mismatch

Fresh look at problems

IR/"optimization format" design involves multiple tradeoffs
● Iterative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits
● Dialect-to-dialect lowering is easy
● Ops from different dialects can mix in same IR

○ Lowering from “A” to “D” may skip “B” and “C”
● Avoid lowering too early and losing information

○ Premature lowering predecessor of all evil
○ Help define hard analyses away

Doesn't think for you, enables
iterating

25

What's in the box

26

What's in box : Looking at code

● Model operations
● Defining passes/transforms
● Testing

Not shown:

● Defining custom attributes & types
● Dataflow analysis frameworks

○ Sparse & dense, lattice of values, possible
to combine multiple together

● Existing sets of optimizations,
analysis, dialects

27

Operations

● MLIR provides general system for creating and modelling operations
● Operations enable defining the level of abstraction/optimization
● Very little built-in concepts in MLIR

○ function, module, for-loop are all just operations
○ a user could have defined them just

● Operations need not be defined

func @some_func(%arg0: !random_dialect<"custom_type">) ->
 !another_dialect<"other_type"> {
 %result = "custom.operation"(%arg0) :
 (!random_dialect<"custom_type">) -> !another_dialect<"other_type">
 return %result : !another_dialect<"other_type">
}

28

Syntax In a Nutshell

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
 : (!mydialect.custom_type>) -> (!mydialect.other_type>, !mydialect.other_type>)
 loc(callsite("foo" at "mysource.cc":10:8))

Name of the
results

Op Id
Number of

values returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix
for the type

Opaque string
/

Dialect specific
type

List of attributes:
constant named arguments

Mandatory and
Rich Location

29

Dialects

A MLIR dialect is a logical grouping including:

● ~ consistent collection of abstractions/library

● A prefix (“namespace” reservation)

● A list of custom types

● A list of operations, each its name and implementation:
○ Verifier for operation invariants

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Possibly custom parser and assembly printer

● A list of passes (for analysis, transformations, and dialect conversions)

30

Defining a Dialect

● Dialect & custom types defined in C++
● Dialect can define hooks for

○ type printing and printing, constant folding
○ ...

● Ops can be defined
○ Programmatically (in C++)
○ Using Op Definition Spec (TableGen)

■ All (almost all?) ops in TF, TFlite,
MLIR core defined using ODS

■ Model hierarchies, multiclasses, ...
○ Custom printing, parsing, folding,

canonicalization, verification
○ Documentation

def TF_LeakyReluOp : TF_Op<"LeakyRelu",
 [NoSideEffect,
 TF_SameOperandsAndResultTypeResolveRef]> {
 let summary =
 "Computes rectified linear: `max(features, features * alpha)`.";

 let arguments = (ins
 TF_FloatTensor:$features,

 DefaultValuedAttr<F32Attr, "0.2f">:$alpha
);

 let results = (outs
 TF_FloatTensor:$activations
);

 // Derived attributes are infrequent outside TF.
 TF_DerivedOperandTypeAttr T =
 TF_DerivedOperandTypeAttr<0>;

 let hasFolder = 1;
}

31

Progressive disclosure: Op modelling is a sliding scale

● Start with conservative definition
of op, refine over time

● The more modelled, the better
○ Verification -> good invariants results

in smaller debugs
○ Side-effects enables greater

optimizations: "may change the world"
-> has to run before delete [opt-in to
performance]

● For data flow names operands,
results & basic attributes goes far

● Declarative assembly format

def TF_Log1pOp : TF_Op<"Log1p", [NoSideEffect,
 SameOperandsAndResultType, TF_CwiseUnary]> {
 let summary = "Computes natural logarithm of (1 + x) element-wise.";

 let description = [{
 I.e., \\(y = \log_e (1 + x)\\).

 Example:

    ```python
    x = tf.constant([0, 0.5, 1, 5])
    tf.math.log1p(x) ==> [0., 0.4054651, 0.6931472, 1.7917595]
    ```
 }];

 let arguments = (ins
 TF_FpOrComplexTensor:$x
);

 let results = (outs
 TF_FpOrComplexTensor:$y
);

 TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
}

https://www.tensorflow.org/mlir/tf_ops#tflog1p_tflog1pop 32

Passes/transforms/patterns

● Now you have operations/modelled your problem, what now?
● Optimize the model

○ Mostly computationally (make it go faster)
○ Quantize it?
○ Compress operations?

● Analyze the graph
○ Find maximum memory usage

● Compile to target architecture
○ Lower to loops, target raw libraries [talk later today by Harsh]

33

Writing a pattern

Two ways:

1. C++ pattern

2. Declarative rewrite specification

def : Pat<(TF_SqueezeOp StaticShapeTensor:$arg), (TFL_ReshapeOp $arg)>;

34

Specify simple patterns simply

● Support M-N patterns
● Support constraints on Operations, Operands and Attributes
● Support specifying dynamic predicates
● Support native C++ code rewrites

○ Always a long tail, don't make the common case hard for the tail!

Goal: Reduces boilerplate, easy to express for simple cases

def : Pat<(TF_SqueezeOp StaticShapeTensor:$arg), (TFL_ReshapeOp $arg)>;

35

Declarative Rewrite Rule frontend

● Currently TableGen DAG (S-expr) format
○ Widely used in LLVM backends
○ Acquired taste still :)
○ It is intended to keep the simple case simple

● Also working on PDL, a lower level transformation bytecode
○ Frontend independent, goal to be targeted by multiple frontends
○ Others are building some Python rewrite specifications on top

● Others generating these
from YAML

36

Define a pass
include "mlir/Pass/PassBase.td"

// This defines the structure for a pass. Normally one would have multiple
// patterns or transformations per pass. And so defining a new pass isn't that
// frequent.
//
// The format below is used to both dictate on what the pass operates and to
// add description from which documentation could be generated. It can also
// have additional options as well specify dependent dialects.
def AddRewritePass : Pass<"add-rewrite", "FuncOp"> {
 // name of pass on CLI ~~~~~~~~~~~
 // type of op it operates on ~~~~~~
 let summary = "Example addition rewrite pass";
 let description = [{
 Does cool stuff.
 }];

 // Constructor that will return an instance of the AddRewrite pass.
 let constructor = "::mlir::TF::CreateAddRewritePass()";

 let options = [
 // This pass doesn't have any options (which is default), but adding to
 // make aware of as this allows passing options to the pass.
];

 let statistics = [
 Statistic<"num_addns_", "num-adds", "Number of AddNs after pass ran">
];
} 37

Pass driver (opt-tool)

● Normally per project level
● Pretty easy to add new driver:

#include "add_rewrite_pass.h"
#include "tensorflow/compiler/mlir/init_mlir.h"
#include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h"
#include "third_party/llvm/mlir/include/mlir/InitAllDialects.h"
#include "third_party/llvm/mlir/include/mlir/InitAllPasses.h"
#include "third_party/llvm/mlir/include/mlir/Support/MlirOptMain.h"

int main(int argc, char **argv) {
 tensorflow::InitMlir y(&argc, &argv);

 mlir::DialectRegistry registry;
 mlir::registerAllDialects(registry);
 mlir::RegisterAllTensorFlowDialects(registry);

 mlir::registerAllPasses();
 // New pass being tested.
 mlir::TF::registerTensorFlowAddRewritePasses();

 return failed(
 mlir::MlirOptMain(argc, argv, "Rewrite test pass driver\n", registry));
} 38

Hint: develop your passes iteratively like your tests

// RUN: mlir-opt %s -affine-loop-unroll="unroll-full" | FileCheck %s
func @loop_nest_simplest() {
 // UNROLL-FULL: affine.for %arg0 = 0 to 100 step 2 {
 affine.for %i = 0 to 100 step 2 {
 // UNROLL-FULL: %c1_i32 = constant 1 : i32
 // UNROLL-FULL-NEXT: %c1_i32_0 = constant 1 : i32
 // UNROLL-FULL-NEXT: %c1_i32_1 = constant 1 : i32
 // UNROLL-FULL-NEXT: %c1_i32_2 = constant 1 : i32
 affine.for %j = 0 to 4 {
 %x = constant 1 : i32
 }
 } // UNROLL-FULL: }
 return // UNROLL-FULL: return
}

Input may be written by hand or
result of tools such as tf-translate
or dumped reproducer module

unit test

colab

39

Getting involved

40

MLIR is a community project

41

● Important takeaway from looking around internally and externally, from Compilers
for Machine Learning (C4ML) & HPC community (SC) to HW folks (ISSCC)

○ All solving similar problems over and over
○ Effort on common (but very important and not really common) parts take away from value

add

● MLIR is OSS with active community

○ mlir.dev/forum for Discourse forum (RFCs and longer discussions happen here)
○ mlir.dev/chat for Discord chat (quick convos, across time zones often here)

Thank you to the team!

Questions?

42

