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Outline

● Brief MLIR introduction
● MLIR philosophy
● What you get in the box
● Questions
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A collection of modular and reusable software 
components that enables the progressive 

lowering of high level operations, to efficiently 
target hardware in a common way
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Multi-Level Intermediate Representation

 New compiler 
infrastructure

Originally built by team 
in TensorFlow 

ecosystem

Under neutral 
governance as part 

of LLVM project
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Origin: Many graph compilers

Not ideal (old) state
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Many broken user journeys



LLVM IR has proved itself as a 
versatile “mid-level” representation 
similar to C with vectors and SSA

LLVM IR

LLVM: Industry Standard for Compiler Infrastructures
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LLVM IR has proved itself as a 
versatile “mid-level” representation 
similar to C with vectors and SSA

LLVM IR Machine IRGlobalISel MC IR

LLVM IR is not enough for low-level 
representations

Multiple lower levels of abstraction 
introduced over time

LLVM: Industry Standard for Compiler Infrastructures
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LLVM IR is not enough for high-level 
representations

There is a huge abstraction gap 
between ASTs and LLVM IR, covered 
in a one-shot conversion in Clang.

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

LLVM: Industry Standard for Compiler Infrastructures
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Clang has a representation parallel to 
AST used in, e.g., static analyzer, 
various advanced diagnostics.

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

clang CFG

LLVM: Industry Standard for Compiler Infrastructures
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Some tools (e.g. Polly) resort to 
raising from LLVM IR to represent 
higher-level constructs such as 
loops.

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

ScopInfo

LLVM: Industry Standard for Compiler Infrastructures
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Newer languages/compilers define 
custom intermediate representations 
between AST and LLVM IR for 
language-specific analyses and 
transformations

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

LLVM: Industry Standard for Compiler Infrastructures

11



LLVM IR Machine IRGlobalISel MC IR

As we saw modern ML frameworks 
include domain specific compiler 
infrastructures albeit 
domain-specific

clang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API, 
Keras

It’s not even only source languages!
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LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API, 
Keras

● Type system support.
● CSE, DCE and other 

“canonicalizations”.
● Location tracking and 

diagnostics.
● Pass management.
● Regions, basic blocks, 

statements.
● Conversions and validations.
● Tooling for tests, benchmarks, 

etc.

How much code in common but reimplemented?
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Great!
● High-level domain-specific optimizations
● Progressive lowering encourages reuse between levels
● Great location tracking enables flow-sensitive “type checking”

Domain specific intermediate representation 

Not great!
● Huge expense to build this infrastructure
● Reimplementation of all the same stuff: 

○ pass managers, location tracking, use-def chains, inlining, constant folding, CSE, testing tools, ….

● Innovations in one community don’t benefit the others
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A toolkit for representing and transforming “code”

Represent and transform IR ↺⇄⇓

Represent Multiple Levels of

● tree-based IRs (ASTs),   
● graph-based IRs (TF Graph, HLO),
● machine instructions (LLVM IR)

IR at the same time

While enabling

Common compiler infrastructure 

● location tracking
● richer type system
● common set of passes 

(analysis/optimization)

And much more
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↺⇄⇓

Missing direction? Sort of

● Almost always easier to preserve than recover info
● Lifting is fragile
● User-intent impossible to recover

Principle: Don't destroy information/structure you'll need to recover later
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Example: TensorFlow Control Flow v1

17 of 70

  x = constant_op.constant(10.0, name='x')

  pred = math_ops.less(1, 2)

  fn1 = lambda: math_ops.exp(x, name='fn1')

  fn2 = lambda: constant_op.constant(20.0)

  r = control_flow_ops.cond(pred, fn1, fn2)

  r = r * x

  _ = gradients.gradients(r, [x])[0]

User writes:

  %c0 = mhlo.constant dense<1> : tensor<i64>
  %c1 = mhlo.constant dense<2> : tensor<i64>
  %0 = mhlo.while(%arg1 = %arg0) :
      (tensor<*xf32>) -> tensor<*xf32>
  cond {

    %1 = "mhlo.compare"(%c0, %c1) 
     {comparison_direction = "LT"} :
        (tensor<i64>, tensor<i64>) -> tensor<i1>
    "mhlo.return"(%1) : (tensor<i1>) -> ()
  } do {
    // ...
    "mhlo.return"(%4) : (tensor<*f32>) -> ()
  }

XLA wants (using MLIR MHLO dialect):

Dataflow computing



Mix and match in a single IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
    : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA (MHLO)

LLVM IR

%m = “mhlo.AllToAll"(%z)
          {split_dimension: 1, concat_dimension: 0, split_count: 2}
    : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b 
    : f32

Lo
w

er
in

g

I very rarely work with 
only 1 dialect (even at 
given time)
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Mix and match in a single IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
    : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “mhlo.AllToAll"(%z)
          {split_dimension: 1, concat_dimension: 0, split_count: 2}
    : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b 
    : f32

Lo
w

er
in

g

In software In hardware

● IP blocks

● Generator libraries
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vs

Don't create artificial boundaries

MLIR enables building domain specific 
IRs and representing problem domains

Force all into one

Without reinventing the wheel

Without forcing abstracting over 
and dropping semantics until 
desired

Different mechanisms for 
abstracting (ops, interfaces, types)
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Core design principles

1. Parsimony

2. Traceability

3. Progressivity

See "MLIR: Scaling Compiler Infrastructure for Domain Specific Computation", CGO, 
March 1, 2021 for further expansion
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Design principles

Parsimony Traceability Progressivity

“Entities should not be multiplied 
without necessity.” In compilers, 
some things are intrinsically 
complex, avoid making easy 
things incidentally complex. A 
small set of versatile built-in 
concepts enables wide 
extensibility of the system.

It is almost always easier to 
preserve information than to 
recover it. Keep the compiler 
accountable by making its 
operation transparent and 
analyzable. Declarative 
specification helps unless it 
becomes more complex than 
algorithms.

In compilers, premature lowering 
is the predecessor of all evil. 
Preserve high-level abstractions 
as long as necessary, lower them 
consciously. Embrace diverging 
flows and extensibility. 
Intermediate state is important 
in an IR.
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Design requirements

Parsimony Traceability Progressivity

- Everything extensible
- SSA + graphs + regions

- Pervasive source location 
- Declarative definitions

- Support high-level 
abstractions

- Progressive lowering
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How is MLIR different?

From graph 
representation 

through optimization 
to code generation

State of Art Compiler 
Technology

MLIR is NOT just a 
common graph 

serialization format 
nor is there anything 

like it

Modular & Extensible Not opinionated

Choose the level of 
representation that is 
right for your device
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MLIR : Reusable Compiler Abstraction Toolbox

No forced IR impedance 
mismatch

Fresh look at problems

IR/"optimization format" design involves multiple tradeoffs
● Iterative process, constant learning experience

MLIR allows mixing levels of abstraction with non-obvious compounding benefits
● Dialect-to-dialect lowering is easy
● Ops from different dialects can mix in same IR

○ Lowering from “A” to “D” may skip “B” and “C” 
● Avoid lowering too early and losing information

○ Premature lowering predecessor of all evil
○ Help define hard analyses away

Doesn't think for you, enables 
iterating
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What's in the box
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What's in box : Looking at code

● Model operations
● Defining passes/transforms
● Testing

Not shown:

● Defining custom attributes & types
● Dataflow analysis frameworks

○ Sparse & dense, lattice of values, possible 
to combine multiple together

● Existing sets of optimizations, 
analysis, dialects
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Operations

● MLIR provides general system for creating and modelling operations
● Operations enable defining the level of abstraction/optimization
● Very little built-in concepts in MLIR

○ function, module, for-loop are all just operations
○ a user could have defined them just

● Operations need not be defined

func @some_func(%arg0: !random_dialect<"custom_type">) ->
    !another_dialect<"other_type"> {
  %result = "custom.operation"(%arg0) :
      (!random_dialect<"custom_type">) -> !another_dialect<"other_type">
  return %result : !another_dialect<"other_type">
}
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Syntax In a Nutshell

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
             : (!mydialect.custom_type>) -> (!mydialect.other_type>, !mydialect.other_type>)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

Name of the
results

Op Id
Number of 

values returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location
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Dialects

A MLIR dialect is a logical grouping including:

● ~ consistent collection of abstractions/library

● A prefix (“namespace” reservation)

● A list of custom types

● A list of operations, each its name and implementation:
○ Verifier for operation invariants 

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Possibly custom parser and assembly printer

● A list of passes (for analysis, transformations, and dialect conversions)
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Defining a Dialect

● Dialect & custom types defined in C++
● Dialect can define hooks for

○ type printing and printing, constant folding
○ ...

● Ops can be defined
○ Programmatically (in C++)
○ Using Op Definition Spec (TableGen)

■ All (almost all?) ops in TF, TFlite,
MLIR core defined using ODS

■ Model hierarchies, multiclasses, ...
○ Custom printing, parsing, folding,

canonicalization, verification
○ Documentation

def TF_LeakyReluOp : TF_Op<"LeakyRelu",
    [NoSideEffect,
     TF_SameOperandsAndResultTypeResolveRef]> {
  let summary =
    "Computes rectified linear: `max(features, features * alpha)`.";

  let arguments = (ins
    TF_FloatTensor:$features,

    DefaultValuedAttr<F32Attr, "0.2f">:$alpha
  );

  let results = (outs
    TF_FloatTensor:$activations
  );

  // Derived attributes are infrequent outside TF.
  TF_DerivedOperandTypeAttr T =
    TF_DerivedOperandTypeAttr<0>;

  let hasFolder = 1;
}
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Progressive disclosure: Op modelling is a sliding scale

● Start with conservative definition 
of op, refine over time

● The more modelled, the better
○ Verification -> good invariants results 

in smaller debugs
○ Side-effects enables greater 

optimizations: "may change the world" 
-> has to run before delete [opt-in to 
performance]

● For data flow names operands, 
results & basic attributes goes far

● Declarative assembly format

def TF_Log1pOp : TF_Op<"Log1p", [NoSideEffect,
     SameOperandsAndResultType, TF_CwiseUnary]> {
  let summary = "Computes natural logarithm of (1 + x) element-wise.";

  let description = [{
    I.e., \\(y = \log_e (1 + x)\\).

    Example:

    ```python
    x = tf.constant([0, 0.5, 1, 5])
    tf.math.log1p(x) ==> [0., 0.4054651, 0.6931472, 1.7917595]
    ```
  }];

  let arguments = (ins
    TF_FpOrComplexTensor:$x
  );

  let results = (outs
    TF_FpOrComplexTensor:$y
  );

  TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
}

https://www.tensorflow.org/mlir/tf_ops#tflog1p_tflog1pop 32



Passes/transforms/patterns

● Now you have operations/modelled your problem, what now?
● Optimize the model

○ Mostly computationally (make it go faster)
○ Quantize it?
○ Compress operations?

● Analyze the graph
○ Find maximum memory usage

● Compile to target architecture
○ Lower to loops, target raw libraries [talk later today by Harsh]
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Writing a pattern

Two ways:

1. C++ pattern

2. Declarative rewrite specification

def : Pat<(TF_SqueezeOp StaticShapeTensor:$arg), ( TFL_ReshapeOp $arg)>;
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Specify simple patterns simply

● Support M-N patterns
● Support constraints on Operations, Operands and Attributes
● Support specifying dynamic predicates
● Support native C++ code rewrites

○ Always a long tail, don't make the common case hard for the tail!

Goal: Reduces boilerplate, easy to express for simple cases

def : Pat<(TF_SqueezeOp StaticShapeTensor:$arg), ( TFL_ReshapeOp $arg)>;
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Declarative Rewrite Rule frontend

● Currently TableGen DAG (S-expr) format
○ Widely used in LLVM backends
○ Acquired taste still :) 
○ It is intended to keep the simple case simple

● Also working on PDL, a lower level transformation bytecode
○ Frontend independent, goal to be targeted by multiple frontends
○ Others are building some Python rewrite specifications on top

● Others generating these
from YAML
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Define a pass
include "mlir/Pass/PassBase.td"

// This defines the structure for a pass. Normally one would have multiple
// patterns or transformations per pass. And so defining a new pass isn't that
// frequent.
//
// The format below is used to both dictate on what the pass operates and to
// add description from which documentation could be generated. It can also
// have additional options as well specify dependent dialects.
def AddRewritePass : Pass<"add-rewrite", "FuncOp"> {
  // name of pass on CLI   ~~~~~~~~~~~
  // type of op it operates on            ~~~~~~
  let summary = "Example addition rewrite pass";
  let description = [{
    Does cool stuff.
  }];

  // Constructor that will return an instance of the AddRewrite pass.
  let constructor = "::mlir::TF::CreateAddRewritePass()";

  let options = [
    // This pass doesn't have any options (which is default), but adding to
    // make aware of as this allows passing options to the pass.
  ];

  let statistics = [
    Statistic<"num_addns_", "num-adds", "Number of AddNs after pass ran">
  ];
} 37



Pass driver (opt-tool)

● Normally per project level
● Pretty easy to add new driver:

#include "add_rewrite_pass.h"
#include "tensorflow/compiler/mlir/init_mlir.h"
#include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h"
#include "third_party/llvm/mlir/include/mlir/InitAllDialects.h"
#include "third_party/llvm/mlir/include/mlir/InitAllPasses.h"
#include "third_party/llvm/mlir/include/mlir/Support/MlirOptMain.h"

int main(int argc, char **argv) {
  tensorflow::InitMlir y(&argc, &argv);

  mlir::DialectRegistry registry;
  mlir::registerAllDialects(registry);
  mlir::RegisterAllTensorFlowDialects(registry);

  mlir::registerAllPasses();
  // New pass being tested.
  mlir::TF::registerTensorFlowAddRewritePasses();

  return failed(
      mlir::MlirOptMain(argc, argv, "Rewrite test pass driver\n", registry));
} 38



Hint: develop your passes iteratively like your tests

// RUN: mlir-opt %s -affine-loop-unroll="unroll-full" | FileCheck %s
func @loop_nest_simplest() {
  // UNROLL-FULL: affine.for %arg0 = 0 to 100 step 2 {
  affine.for %i = 0 to 100 step 2 {
    // UNROLL-FULL: %c1_i32 = constant 1 : i32
    // UNROLL-FULL-NEXT: %c1_i32_0 = constant 1 : i32
    // UNROLL-FULL-NEXT: %c1_i32_1 = constant 1 : i32
    // UNROLL-FULL-NEXT: %c1_i32_2 = constant 1 : i32
    affine.for %j = 0 to 4 {
      %x = constant 1 : i32
    }
  }       // UNROLL-FULL:  }
  return  // UNROLL-FULL:  return
}

Input may be written by hand or 
result of tools such as tf-translate 
or dumped reproducer module

unit test

colab
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Getting involved
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MLIR is a community project
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● Important takeaway from looking around internally and externally, from Compilers 
for Machine Learning (C4ML) & HPC community (SC) to HW folks (ISSCC)

○ All solving similar problems over and over
○ Effort on common (but very important and not really common) parts take away from value 

add

● MLIR is OSS with active community

○ mlir.dev/forum for Discourse forum (RFCs and longer discussions happen here)
○ mlir.dev/chat for Discord chat (quick convos, across time zones often here)



Thank you to the team!

Questions?
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